WO2021233302A1 - 稠环衍生物及其在药学上的应用 - Google Patents

稠环衍生物及其在药学上的应用 Download PDF

Info

Publication number
WO2021233302A1
WO2021233302A1 PCT/CN2021/094384 CN2021094384W WO2021233302A1 WO 2021233302 A1 WO2021233302 A1 WO 2021233302A1 CN 2021094384 W CN2021094384 W CN 2021094384W WO 2021233302 A1 WO2021233302 A1 WO 2021233302A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
reaction solution
crude product
dichloromethane
alkyl
Prior art date
Application number
PCT/CN2021/094384
Other languages
English (en)
French (fr)
Inventor
陈曙辉
冯嘉杰
魏巍
李鹏
贺海鹰
刘金鑫
黎健
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Priority to EP21809650.1A priority Critical patent/EP4155312A1/en
Priority to US17/926,285 priority patent/US20230212187A1/en
Priority to CN202180036796.4A priority patent/CN115667270A/zh
Priority to JP2022571342A priority patent/JP7407976B2/ja
Publication of WO2021233302A1 publication Critical patent/WO2021233302A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/12Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D498/14Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/22Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings

Definitions

  • the present invention relates to a class of fused ring derivatives, in particular to compounds represented by formula (I) and pharmaceutically acceptable salts thereof.
  • Influenza virus or influenza virus (IFV) is a segmented single-stranded antisense RNA virus that can cause influenza in humans and animals. Influenza viruses can cause very high morbidity and mortality, especially type A influenza viruses can also cause a global pandemic, such as the "Spanish influenza" (H1N1 subtype) from 1918 to 1920, and the "Asian influenza” from 1957 to 1958. "(H2N2 subtype), “Asian influenza” (H3N2 subtype) from 1968 to 1969, “Hong Kong influenza” (H1N1 subtype) from 1977 to 1978, and the first H1N1 influenza outbreak in Mexico in March 2009. The influenza pandemic caused thousands of deaths, caused huge social panic and increased social instability.
  • Influenza A virus is a single negative-stranded RNA virus.
  • the genome contains 8 RNA fragments, encoding 11 proteins: hemagglutinin (HA), neuraminidase (NA), nucleoprotein (NP), M1, M2, NS1, NS2, PA, PB1, PB1-F2 and PB2.
  • Influenza A viruses can be divided into multiple subtypes according to the two proteins, hemagglutinin (HA) and neuraminidase (NA) on the surface of the virus. There are currently 18 known HA subtypes and 11 NA subtypes.
  • the hemagglutinin (HA) of the influenza virus is responsible for recognizing the sialic acid glycoprotein of the host cell, and mediating the fusion of the outer membrane of the virus with the intracellular membrane to release the viral nucleocapsid into the cytoplasm.
  • Influenza virus ceramidase (NA) can remove sialic acid on the surface of virus particles during the replication process, so that virus particles cannot continue to accumulate on the surface of host cells, thereby facilitating the release of virions and further infecting more host cells.
  • the synthesis of influenza virus protein utilizes the host cell translation mechanism, and even the virus can suspend the translation of host protein to speed up the synthesis of its own protein.
  • Viral mRNA needs to be capped at the 5'end of host mRNA to start translation. This process is called “cap snatching", which is mainly accomplished by the virus's RNA-dependent RNA polymerase (RdRp), and its PA subunit has RNA endonuclease activity. , responsible for cutting off host mRNA. After completing the polyadenylation process and capping process, the viral mRNA exits the nucleus, enters the cytoplasm, and is translated like host cell mRNA.
  • nuclear export of viral vRNA fragments is mediated by the viral M1 protein and NS2 protein.
  • M1 protein interacts with vRNA and NP protein, it also interacts with nuclear export protein NS2; thus, nuclear export protein NS2 mediates M1-RNP from the nucleus into the cytoplasm of the host cell in the form of nuclear protein.
  • Antiviral drugs can be used to treat influenza.
  • neuraminidase (NA) inhibitors such as oseltamivir (Tamiflu) have obvious effects on influenza A virus.
  • Enzyme inhibitors have emerged resistant virus strains.
  • anti-influenza virus there is an urgent clinical need for anti-influenza virus drugs with a new mechanism of action that can support single-drug use in the treatment of influenza A, or be used in combination with other anti-influenza virus drugs with other mechanisms of action that have been on the market.
  • WO2016175224 reports the following compounds and their prodrugs:
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • R 1 is selected from H, C 1-3 alkyl, C 3-4 cycloalkyl and oxetane;
  • Each R 2 is independently selected from halogen, cyano, C 1-3 alkyl and C 1-3 alkoxy.
  • the C 1-3 alkyl and C 1-3 alkoxy are optionally selected by 1, 2 Or 3 halogen substitutions;
  • n 0, 1 and 2;
  • R 3 is selected from Phenyl, 5-6 membered heteroaryl, C 1-3 alkyl and C 3-6 cycloalkyl, the phenyl, 5-6 membered heteroaryl, C 1-3 alkyl and C 3-6 Cycloalkyl is optionally substituted with 1, 2, or 3 R b ;
  • R a is selected from phenyl and benzyl
  • R b is each independently selected from H, halogen, hydroxy, cyano, C 1-3 alkyl and C 1-3 alkoxy, and the C 1-3 alkyl and C 1-3 alkoxy are optionally selected by 1, 2 or 3 halogen substitutions;
  • Each R c is independently selected from hydrogen and C 1-3 alkyl
  • R d is selected from hydrogen and C 1-3 alkyl, the C 1-3 alkyl is optionally substituted with 1, 2 or 3 R;
  • R is each independently selected from halogen, C 1-3 alkylamino, hydroxy and C 1-3 alkoxy;
  • n is selected from 1, 2 and 3;
  • the 5-6 membered heteroaryl group contains 1, 2 or 3 heteroatoms or heteroatom groups independently selected from O, S, N and NH.
  • R 1 is selected from H, methyl, isopropyl, cyclopropyl, cyclobutyl and Other variables are as defined in the present invention.
  • R 2 is selected from F, Cl, Br, methyl and methoxy.
  • the methyl and methoxy are optionally substituted with 1, 2 or 3 halogens, and other variables are as described herein. Defined by the invention.
  • R 2 is selected from F, Cl and methyl, and other variables are as defined in the present invention.
  • the above-mentioned R 3 is selected from phenyl, and the phenyl is optionally substituted with 1, 2 or 3 R b , and other variables are as defined in the present invention.
  • R 3 is selected from Other variables are as defined in the present invention.
  • R c is selected from H, and other variables are as defined in the present invention.
  • R d is selected from H, methyl, ethyl and isopropyl, and other variables are as defined in the present invention.
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • R 1 is selected from H and C 1-3 alkyl
  • Each R 2 is independently selected from halogen, cyano, C 1-3 alkyl and C 1-3 alkoxy.
  • the C 1-3 alkyl and C 1-3 alkoxy are optionally selected by 1, 2 Or 3 halogen substitutions;
  • n 0, 1 and 2;
  • R 3 is selected from Phenyl, 5-6 membered heteroaryl, C 1-3 alkyl and C 3-6 cycloalkyl, the phenyl, 5-6 membered heteroaryl, C 1-3 alkyl and C 3-6 Cycloalkyl is optionally substituted with 1, 2, or 3 R b ;
  • R a is selected from phenyl and benzyl
  • R b is each independently selected from halogen, hydroxy, C 1-3 alkyl and C 1-3 alkoxy, and the C 1-3 alkyl and C 1-3 alkoxy are optionally selected by 1, 2 or 3 A halogen substitution;
  • Each R c is independently selected from hydrogen and C 1-3 alkyl
  • R d is selected from hydrogen and C 1-3 alkyl, the C 1-3 alkyl is optionally substituted with 1, 2 or 3 R;
  • R is each independently selected from halogen, C 1-3 alkylamino, hydroxy and C 1-3 alkoxy;
  • E 1 is selected from -(CH 2 ) n -and -(CH 2 ) n O-;
  • n is selected from 1, 2 and 3;
  • the 5-6 membered heteroaryl group contains 1, 2 or 3 heteroatoms or heteroatom groups independently selected from O, S and N.
  • R 1 is selected from H and methyl, and other variables are as defined in the present invention.
  • R 2 is selected from F, Cl, Br, methyl and methoxy.
  • the methyl and methoxy are optionally substituted with 1, 2 or 3 halogens, and other variables are as described herein. Defined by the invention.
  • R 2 is selected from F, Cl and methyl, and other variables are as defined in the present invention.
  • the above-mentioned R 3 is selected from phenyl, and the phenyl is optionally substituted with 1, 2 or 3 R b , and other variables are as defined in the present invention.
  • R 3 is selected from phenyl, and other variables are as defined in the present invention.
  • R c is selected from H, and other variables are as defined in the present invention.
  • R d is selected from H, methyl and ethyl, and other variables are as defined in the present invention.
  • the above-mentioned E 1 is selected from -CH 2 -, -(CH 2 ) 3 -, -CH 2 O- and -(CH 2 ) 2 O-, and other variables are as defined in the present invention.
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • R 1 is selected from H, C 1-3 alkyl, C 3-4 cycloalkyl and oxetane;
  • Each R 2 is independently selected from halogen, cyano, C 1-3 alkyl and C 1-3 alkoxy.
  • the C 1-3 alkyl and C 1-3 alkoxy are optionally selected by 1, 2 Or 3 halogen substitutions;
  • n 0, 1 and 2;
  • R 3 is selected from Phenyl, 5-6 membered heteroaryl, C 1-3 alkyl and C 3-6 cycloalkyl, the phenyl, 5-6 membered heteroaryl, C 1-3 alkyl and C 3-6 Cycloalkyl is optionally substituted with 1, 2, or 3 R b ;
  • R a is selected from phenyl and benzyl
  • R b is each independently selected from halogen, hydroxy, C 1-3 alkyl and C 1-3 alkoxy, and the C 1-3 alkyl and C 1-3 alkoxy are optionally selected by 1, 2 or 3 A halogen substitution;
  • Each R c is independently selected from hydrogen and C 1-3 alkyl
  • R d is selected from hydrogen and C 1-3 alkyl, the C 1-3 alkyl is optionally substituted with 1, 2 or 3 R;
  • R is each independently selected from halogen, C 1-3 alkylamino, hydroxy and C 1-3 alkoxy;
  • E 1 is selected from -(CH 2 ) n -and -(CH 2 ) n O-;
  • n is selected from 1, 2 and 3;
  • the 5-6 membered heteroaryl group contains 1, 2 or 3 heteroatoms or heteroatom groups independently selected from O, S and N.
  • R 1 is selected from H, methyl, cyclopropyl, cyclobutyl and Other variables are as defined in the present invention.
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • R 1 is selected from H, C 1-3 alkyl, C 3-4 cycloalkyl and oxetane;
  • Each R 2 is independently selected from halogen, cyano, C 1-3 alkyl and C 1-3 alkoxy.
  • the C 1-3 alkyl and C 1-3 alkoxy are optionally selected by 1, 2 Or 3 halogen substitutions;
  • n 0, 1 and 2;
  • R 3 is selected from Phenyl, 5-6 membered heteroaryl, C 1-3 alkyl and C 3-6 cycloalkyl, the phenyl, 5-6 membered heteroaryl, C 1-3 alkyl and C 3-6 Cycloalkyl is optionally substituted with 1, 2, or 3 R b ;
  • R a is selected from phenyl and benzyl
  • R b is each independently selected from halogen, hydroxy, C 1-3 alkyl and C 1-3 alkoxy, and the C 1-3 alkyl and C 1-3 alkoxy are optionally selected by 1, 2 or 3 A halogen substitution;
  • Each R c is independently selected from hydrogen and C 1-3 alkyl
  • R d is selected from hydrogen, C 1-3 alkyl and -(CH 2 CH 2 O) 2 CH 3 , the C 1-3 alkyl is optionally substituted with 1, 2 or 3 R;
  • R is each independently selected from halogen, C 1-3 alkylamino, hydroxy and C 1-3 alkoxy;
  • n is selected from 1, 2 and 3;
  • the 5-6 membered heteroaryl group contains 1, 2 or 3 heteroatoms or heteroatom groups independently selected from O, S and N.
  • R 1 is selected from H, methyl, isopropyl, cyclopropyl, cyclobutyl and Other variables are as defined in the present invention.
  • the aforementioned R d is selected from H, methyl, ethyl, isopropyl and -(CH 2 CH 2 O) 2 CH 3 .
  • Other variables are as defined in the present invention.
  • R 2 is selected from F, Cl and methyl, and other variables are as defined in the present invention.
  • the above-mentioned R 3 is selected from phenyl, and the phenyl is optionally substituted with 1, 2 or 3 R b , and other variables are as defined in the present invention.
  • R 3 is selected from phenyl and p-fluorophenyl, and other variables are as defined in the present invention.
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • R 1 is selected from H, C 1-3 alkyl, C 3-4 cycloalkyl and oxetane;
  • Each R 2 is independently selected from halogen, cyano, C 1-3 alkyl and C 1-3 alkoxy.
  • the C 1-3 alkyl and C 1-3 alkoxy are optionally selected by 1, 2 Or 3 halogen substitutions;
  • n 0, 1 and 2;
  • R 3 is selected from Phenyl, 5-6 membered heteroaryl, C 1-3 alkyl and C 3-6 cycloalkyl, the phenyl, 5-6 membered heteroaryl, C 1-3 alkyl and C 3-6 Cycloalkyl is optionally substituted with 1, 2, or 3 R b ;
  • R a is selected from phenyl and benzyl
  • R b is each independently selected from halogen, hydroxy, cyano, C 1-3 alkyl and C 1-3 alkoxy, and the C 1-3 alkyl and C 1-3 alkoxy are optionally selected by 1, 2 or 3 halogen substitutions;
  • Each R c is independently selected from hydrogen and C 1-3 alkyl
  • R d is selected from hydrogen and C 1-3 alkyl, the C 1-3 alkyl is optionally substituted with 1, 2 or 3 R;
  • R is each independently selected from halogen, C 1-3 alkylamino, hydroxy and C 1-3 alkoxy;
  • n is selected from 1, 2 and 3;
  • the 5-6 membered heteroaryl group contains 1, 2 or 3 heteroatoms or heteroatom groups independently selected from O, S, N and NH.
  • R 1 is selected from H, methyl, isopropyl, cyclopropyl, cyclobutyl and Other variables are as defined in the present invention.
  • R 2 is selected from F, Cl, Br, methyl and methoxy.
  • the methyl and methoxy are optionally substituted with 1, 2 or 3 halogens, and other variables are as described herein. Defined by the invention.
  • R 2 is selected from F, Cl and methyl, and other variables are as defined in the present invention.
  • the above-mentioned R 3 is selected from phenyl, and the phenyl is optionally substituted with 1, 2 or 3 R b , and other variables are as defined in the present invention.
  • R 3 is selected from Other variables are as defined in the present invention.
  • R c is selected from H, and other variables are as defined in the present invention.
  • R d is selected from H, methyl, ethyl and isopropyl, and other variables are as defined in the present invention.
  • the present invention also provides the compound of formula (V-1), (V-2), (V-3) and (VI-1) or a pharmaceutically acceptable salt thereof,
  • R 1 , R 2 , R 4 , R b , m and n are as defined in the present invention.
  • the present invention also provides the following compounds or pharmaceutically acceptable salts thereof, which are selected from:
  • the present invention also provides the above-mentioned compound or a pharmaceutically acceptable salt thereof, which is selected from:
  • the present invention also provides the above-mentioned compound or a pharmaceutically acceptable salt thereof, which is selected from:
  • the present invention also provides the application of the above-mentioned compound or a pharmaceutically acceptable salt thereof in the preparation of drugs for treating influenza virus RNA endonuclease inhibitor-related diseases.
  • the present invention also provides the above-mentioned application, characterized in that the drug related to RNA endonuclease inhibitor is a drug for anti-influenza virus.
  • the present invention also provides the following synthetic route:
  • pharmaceutically acceptable refers to those compounds, materials, compositions and/or dosage forms that are within the scope of reliable medical judgment and are suitable for use in contact with human and animal tissues. , Without excessive toxicity, irritation, allergic reactions or other problems or complications, commensurate with a reasonable benefit/risk ratio.
  • pharmaceutically acceptable salt refers to a salt of the compound of the present invention, which is prepared from a compound with specific substituents discovered in the present invention and a relatively non-toxic acid or base.
  • a base addition salt can be obtained by contacting the compound with a sufficient amount of base in a pure solution or a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amine or magnesium salt or similar salts.
  • the acid addition salt can be obtained by contacting the compound with a sufficient amount of acid in a pure solution or a suitable inert solvent.
  • Examples of pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, hydrogen carbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and organic acid salts, the organic acid includes, for example, acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, tartaric acid and methanesulfonic acid; also include salts of amino acids (such as arginine, etc.) , And salts of organic acids such as glucuronic acid. Certain specific compounds of the present invention contain basic and
  • the pharmaceutically acceptable salt of the present invention can be synthesized from the parent compound containing acid or base by conventional chemical methods. In general, such salts are prepared by reacting these compounds in free acid or base form with a stoichiometric amount of appropriate base or acid in water or organic solvent or a mixture of both.
  • C 1-3 alkyl is used to indicate a linear or branched saturated hydrocarbon group composed of 1 to 3 carbon atoms.
  • the C 1-3 alkyl group includes C 1-2 and C 2-3 alkyl groups, etc.; it can be monovalent (such as methyl), divalent (such as methylene) or multivalent (such as methine) .
  • Examples of C 1-3 alkyl include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), and the like.
  • C 1-3 alkoxy refers to those alkyl groups containing 1 to 3 carbon atoms that are attached to the rest of the molecule through an oxygen atom.
  • the C 1-3 alkoxy group includes C 1-2 , C 2-3 , C 3 and C 2 alkoxy groups and the like.
  • Examples of C 1-3 alkoxy include, but are not limited to, methoxy, ethoxy, propoxy (including n-propoxy and isopropoxy), and the like.
  • C 3-6 cycloalkyl means a saturated cyclic hydrocarbon group composed of 3 to 6 carbon atoms, which is a monocyclic and bicyclic ring system, and the C 3-6 cycloalkyl includes C 3-5 , C 4-5 and C 5-6 cycloalkyl, etc.; it can be monovalent, divalent or multivalent.
  • Examples of C 3-6 cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like.
  • C 3-4 cycloalkyl means a saturated cyclic hydrocarbon group composed of 3 to 4 carbon atoms, which is a monocyclic ring system, which may be monovalent, divalent or multivalent.
  • Examples of C 3-4 cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl and the like.
  • 5-6 membered heteroaryl ring and “5-6 membered heteroaryl group” can be used interchangeably in the present invention.
  • the term “5-6 membered heteroaryl group” means a ring consisting of 5 to 6 ring atoms. It is composed of a monocyclic group with a conjugated ⁇ -electron system, in which 1, 2, 3 or 4 ring atoms are heteroatoms independently selected from O, S and N, and the rest are carbon atoms. Where the nitrogen atom is optionally quaternized, the nitrogen and sulfur heteroatoms may optionally be oxidized (ie NO and S(O) p , p is 1 or 2).
  • the 5-6 membered heteroaryl group can be attached to the rest of the molecule through a heteroatom or a carbon atom.
  • the 5-6 membered heteroaryl group includes 5-membered and 6-membered heteroaryl groups.
  • Examples of the 5-6 membered heteroaryl include, but are not limited to, pyrrolyl (including N-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, etc.), pyrazolyl (including 2-pyrazolyl and 3-pyrrolyl, etc.) Azolyl, etc.), imidazolyl (including N-imidazolyl, 2-imidazolyl, 4-imidazolyl and 5-imidazolyl, etc.), oxazolyl (including 2-oxazolyl, 4-oxazolyl and 5- Oxazolyl, etc.), triazolyl (1H-1,2,3-triazolyl, 2H-1,2,3-triazolyl, 1H-1,2,4-triazolyl and 4H-1, 2,
  • halogen or halogen by itself or as part of another substituent represents a fluorine, chlorine, bromine or iodine atom.
  • the compounds of the present invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers Isomers, (D)-isomers, (L)-isomers, and their racemic mixtures and other mixtures, such as enantiomers or diastereomer-enriched mixtures, all of these mixtures belong to this Within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in substituents such as alkyl groups. All these isomers and their mixtures are included in the scope of the present invention.
  • enantiomer or “optical isomer” refers to stereoisomers that are mirror images of each other.
  • cis-trans isomer or “geometric isomer” is caused by the inability to rotate freely because of double bonds or single bonds of ring-forming carbon atoms.
  • diastereomer refers to a stereoisomer in which a molecule has two or more chiral centers and the relationship between the molecules is not mirror images.
  • wedge-shaped solid line keys And wedge-shaped dashed key Represents the absolute configuration of a three-dimensional center, with a straight solid line key And straight dashed key Indicates the relative configuration of the three-dimensional center, using wavy lines Represents a wedge-shaped solid line key Or wedge-shaped dashed key Or use wavy lines Represents a straight solid line key Or straight dashed key
  • the term “enriched in one isomer”, “enriched in isomers”, “enriched in one enantiomer” or “enriched in enantiomers” refers to one of the isomers or pairs of
  • the content of the enantiomer is less than 100%, and the content of the isomer or enantiomer is greater than or equal to 60%, or greater than or equal to 70%, or greater than or equal to 80%, or greater than or equal to 90%, or greater than or equal to 95%, or 96% or greater, or 97% or greater, or 98% or greater, or 99% or greater, or 99.5% or greater, or 99.6% or greater, or 99.7% or greater, or 99.8% or greater, or greater than or equal 99.9%.
  • the term “isomer excess” or “enantiomeric excess” refers to the difference between the relative percentages of two isomers or two enantiomers. For example, if the content of one isomer or enantiomer is 90%, and the content of the other isomer or enantiomer is 10%, the isomer or enantiomer excess (ee value) is 80% .
  • optically active (R)- and (S)-isomers and D and L isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If you want to obtain an enantiomer of a compound of the present invention, it can be prepared by asymmetric synthesis or derivatization with chiral auxiliary agents, in which the resulting diastereomeric mixture is separated and the auxiliary group is cleaved to provide pure The desired enantiomer.
  • the molecule when the molecule contains a basic functional group (such as an amino group) or an acidic functional group (such as a carboxyl group), it forms a diastereomeric salt with an appropriate optically active acid or base, and then passes through a conventional method known in the art The diastereoisomers are resolved, and then the pure enantiomers are recovered.
  • the separation of enantiomers and diastereomers is usually accomplished through the use of chromatography, which uses a chiral stationary phase and is optionally combined with chemical derivatization (for example, the formation of amino groups from amines). Formate).
  • the compound of the present invention may contain unnatural proportions of atomic isotopes on one or more of the atoms constituting the compound.
  • compounds can be labeled with radioisotopes, such as tritium ( 3 H), iodine-125 ( 125 I), or C-14 ( 14 C).
  • deuterium can be substituted for hydrogen to form deuterated drugs.
  • the bond formed by deuterium and carbon is stronger than the bond formed by ordinary hydrogen and carbon.
  • deuterated drugs can reduce toxic side effects and increase drug stability. , Enhance the efficacy, extend the biological half-life of drugs and other advantages. All changes in the isotopic composition of the compounds of the present invention, whether radioactive or not, are included in the scope of the present invention.
  • substituted means that any one or more hydrogen atoms on a specific atom are replaced by a substituent.
  • the substituent may include deuterium and hydrogen variants, as long as the valence of the specific atom is normal and the compound after substitution Is stable.
  • Oxygen substitution does not occur on aromatic groups.
  • optionally substituted means that it can be substituted or unsubstituted. Unless otherwise specified, the type and number of substituents can be arbitrary on the basis that they can be chemically realized.
  • any variable such as R
  • its definition in each case is independent.
  • the group can optionally be substituted with up to two Rs, and R has independent options in each case.
  • combinations of substituents and/or variants thereof are only permitted if such combinations result in stable compounds.
  • linking group When the number of a linking group is 0, such as -(CRR) 0 -, it means that the linking group is a single bond.
  • the substituent can be bonded to any atom on the ring, for example, a structural unit It means that the substituent R can be substituted at any position on the cyclohexyl or cyclohexadiene.
  • substituents do not indicate which atom is connected to the substituted group, such substituents can be bonded via any atom.
  • a pyridyl group can pass through any one of the pyridine ring as a substituent. The carbon atom is attached to the substituted group.
  • the middle linking group L is -MW-, at this time -MW- can be formed by connecting ring A and ring B in the same direction as the reading order from left to right It can also be formed by connecting ring A and ring B in the opposite direction to the reading order from left to right
  • Combinations of the linking groups, substituents, and/or variants thereof are only permitted if such combinations result in stable compounds.
  • any one or more sites of the group can be connected to other groups through chemical bonds.
  • the connection method of the chemical bond is not positioned, and there is a H atom at the connectable site, when the chemical bond is connected, the number of H atoms at the site will correspondingly decrease with the number of chemical bonds connected to become the corresponding valence number ⁇ The group.
  • the chemical bond between the site and other groups can be a straight solid bond Straight dashed key Or wavy line Express.
  • the straight solid bond in -OCH 3 means that it is connected to other groups through the oxygen atom in the group;
  • the straight dashed bond in indicates that the two ends of the nitrogen atom in the group are connected to other groups;
  • the wavy line in indicates that the phenyl group is connected to other groups through the 1 and 2 carbon atoms;
  • protecting group includes, but is not limited to, "amino protecting group", “hydroxy protecting group” or “thiol protecting group”.
  • amino protecting group refers to a protecting group suitable for preventing side reactions at the amino nitrogen position.
  • Representative amino protecting groups include, but are not limited to: formyl; acyl, such as alkanoyl (such as acetyl, trichloroacetyl or trifluoroacetyl); alkoxycarbonyl, such as tert-butoxycarbonyl (Boc) ; Arylmethyloxycarbonyl, such as benzyloxycarbonyl (Cbz) and 9-fluorenylmethyloxycarbonyl (Fmoc); arylmethyl, such as benzyl (Bn), trityl (Tr), 1,1-di -(4'-Methoxyphenyl)methyl; silyl groups, such as trimethylsilyl (TMS) and tert-butyldi
  • hydroxy protecting group refers to a protecting group suitable for preventing side reactions of the hydroxyl group.
  • Representative hydroxy protecting groups include but are not limited to: alkyl groups, such as methyl, ethyl, and tert-butyl; acyl groups, such as alkanoyl groups (such as acetyl); arylmethyl groups, such as benzyl (Bn), p-methyl Oxybenzyl (PMB), 9-fluorenylmethyl (Fm) and diphenylmethyl (diphenylmethyl, DPM); silyl groups such as trimethylsilyl (TMS) and tert-butyl Dimethylsilyl (TBS) and so on.
  • alkyl groups such as methyl, ethyl, and tert-butyl
  • acyl groups such as alkanoyl groups (such as acetyl)
  • arylmethyl groups such as benzyl (Bn), p-methyl Oxybenzyl (P
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by combining them with other chemical synthesis methods, and those well known to those skilled in the art Equivalent alternatives, preferred implementations include but are not limited to the embodiments of the present invention.
  • the structure of the compound of the present invention can be confirmed by conventional methods well known to those skilled in the art. If the present invention relates to the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the field.
  • SXRD single crystal X-ray diffraction
  • the cultured single crystal is collected with the Bruker D8 venture diffractometer to collect the diffraction intensity data
  • the light source is CuK ⁇ radiation
  • the scanning method After scanning and collecting relevant data, the direct method (Shelxs97) is further used to analyze the crystal structure to confirm the absolute configuration.
  • aq. and H 2 O stand for water; eq stands for equivalent, equivalent; Boc stands for tert-butoxycarbonyl; PE stands for petroleum ether; ACN stands for acetonitrile; EtOAc stands for ethyl acetate; EtOH stands for ethanol ;MeOH stands for methanol; Allyl stands for allyl; DBU stands for 1,8-diaza hetero[5,4,0]undecene-7; PPTS stands for pyridine p-toluenesulfonate; DMA stands for dimethylacetamide ; DMP stands for Dess-Martin oxidant; T 3 P stands for 1-propyl phosphate cyclic anhydride; HPLC stands for high performance liquid chromatography; LCMS stands for liquid chromatography-mass spectrometry; rt stands for room temperature; mp stands for melting point; °C stands for Celsius ; H stands for hours; mL stands for milliliters
  • the compound of the present invention exhibits a positive effect in a cell-level inhibition of influenza virus replication test, and a protective effect in an animal treatment model pharmacodynamic experiment, and at the same time, the pharmacokinetic properties meet the requirements of the preparation of a medicine.
  • the molecular docking process is through the use of Maestro ( Version 2017-2) in GlideSP[1] and the default options.
  • the crystal structures with PDB ID codes 6FS6 and 6FS7 were selected as the docking template.
  • To prepare protein use Maestro [2]'s protein preparation wizard module to add hydrogen atoms and use the OPLS3 force field.
  • For the preparation of the ligand a 3D structure was generated and the energy was minimized using LigPrep [3].
  • the molecules of the present invention can form key interactions after docking with the template protein, including coordination bonds with metal ions, ⁇ - ⁇ interactions, and hydrophobic interactions. It is similar to the conformation of the reference molecule S-033447 inside the cavity of the target, and it overlaps well.
  • 1,3-propanediol (25.0g, 328.54mmol, 23.81mL, 1eq) was dissolved in dimethyl sulfoxide (120mL), potassium hydroxide (18.43g, 328.54mmol, 1eq) and p-methoxybenzyl were added to it Chlorine (51.45g, 328.54mmol, 44.74mL, 1eq), the reaction solution was stirred at 25°C for 14 hours. The reaction solution was poured into 125 mL of water, and extracted with ethyl acetate (150 mL ⁇ 2).
  • 4,5-difluorosalicylaldehyde 40g, 253.00mmol, 1eq
  • p-methoxybenzyl chloride 43.58g, 278.30mmol, 37.90mL
  • MeCN MeCN
  • the reaction solution was diluted with ethyl acetate (100 mL), followed by washing with water (100 mL ⁇ 2) and saturated brine (100 mL ⁇ 3) in sequence.
  • the organic phase was dried over anhydrous sodium sulfate and concentrated to obtain a crude product.
  • reaction solution was slowly poured into water (100mL), extracted twice with ethyl acetate (100mL ⁇ 2), the organic phases were combined and washed with water (100mL) and saturated brine (100mL) to obtain the organic phase and concentrated under reduced pressure Got crude.
  • Compound 3f was separated by SFC (separation column: Chiralpak AD-3 50 ⁇ 4.6mm ID, 3 ⁇ m; mobile phase: A[CO 2 ]; B (0.05%DEA IPA)%: 5%-40%, 2min) to obtain compound 3ga (Retention time: 1.953min) and 3gb (Retention time: 2.300min).
  • the concentrated filtrate was dissolved in ethyl acetate (200 mL), washed with saturated brine (150 mL ⁇ 2), dried over anhydrous sodium sulfate and concentrated to obtain a crude product.
  • magnesium chips (3.89g, 160.00mmol, 1eq) into a 250ml three-necked flask, replace the system with nitrogen three times, add iodine (406.10mg, 1.60mmol, 322.30 ⁇ L, 0.01eq) under nitrogen protection, and heat until the iodine is evenly spread. Fill up with magnesium chips, stop heating, add tetrahydrofuran (160mL) and 9a (3g, 17.14mmol, 1.89mL, 1eq), heat to 75°C to initiate the reaction, the reaction temperature drops to 70°C, and slowly add 9a (25g, 142.86) to it.
  • reaction solution was stirred at 70° C. for 2 hours, and then cooled to room temperature. Take the supernatant liquid (0.89M, 120.13mL, 2.97eq) of the above reaction solution, and slowly add dropwise 1c (10.0g, 35.94mmol, 1eq) in tetrahydrofuran (100mL) solution at 0°C (for 1.5 hours) After the dropping is completed, the reaction solution is stirred at 25°C for 2 hours.
  • reaction solution was cooled to 20° C., diluted with ethyl acetate (200 mL), washed with water (2 ⁇ 300 mL) and saturated brine (3 ⁇ 300 mL) in sequence, and the organic phase was dried over anhydrous sodium sulfate and concentrated to obtain a crude product.
  • reaction solution was cooled to room temperature, water (30 mL) was added, and the mixture was extracted with ethyl acetate (30 mL ⁇ 2). The organic phase was washed with water (50 mL) and saturated brine (50 mL ⁇ 3), dried over anhydrous sodium sulfate and concentrated to dryness to obtain a crude product.
  • reaction solution was slowly poured into saturated ammonium chloride (100mL), extracted with ethyl acetate (100mL ⁇ 2), the organic phases were combined and washed successively with water (100mL) and saturated brine (100mL), the organic phase was concentrated under reduced pressure to obtain a crude product .
  • reaction solution is stirred for 2 hours at 70°C and cooled to room temperature. Take the supernatant liquid (0.89M, 189.96mL, 2.97eq) of the above reaction solution, and slowly add dropwise 4,5-difluorosalicylaldehyde (9g, 56.93mmol, 1eq) dissolved in tetrahydrofuran (150mL) at 0°C. In the solution (for 2 hours), after the dripping was completed, the reaction solution was stirred at 25°C for 2 hours.
  • 16b (4.33g, 6.15mmol, 1eq) was dissolved in a methanolic hydrochloric acid solution (1M, 43.30mL, 7.04eq) and 1,2-dichloroethane (43.3mL), and stirred at 70°C for 3.5 hours.
  • the organic phases were combined, dried over anhydrous sodium sulfate and concentrated to obtain a crude product.
  • Compound 16e was separated by SFC (separation column: DAICEL CHIRALPAK AS (250mm*30mm, 10 ⁇ m); mobile phase: A[CO 2 ]; B (0.1% NH 3 H 2 O EtOH)%: 40%-40%, min) Compounds 16fa (retention time: 3.464 min) and 16fb (retention time: 4.041 min) were obtained.
  • N,N-dimethylacetamide 5mL
  • 18e 30mg, 49.31 ⁇ mol, 1eq
  • zinc cyanide 20mg, 170.31 ⁇ mol, 10.81 ⁇ L, 3.45eq
  • tetrakis(triphenylphosphine)palladium 11.40mg, 9.86 ⁇ mol, 0.2eq
  • the reaction solution was slowly poured into water (10mL), extracted twice with ethyl acetate (50mL ⁇ 2), the organic phases were combined and washed with water (10mL) and saturated brine (100mL) to obtain the organic phase and concentrated under reduced pressure Got crude.
  • reaction solution was slowly poured into water (100 mL) and extracted with ethyl acetate (100 mL ⁇ 2).
  • the organic phases were combined and washed with water (100 mL) and saturated brine (100 mL) successively, and the organic phase was concentrated under reduced pressure to obtain a crude product.
  • reaction solution was slowly poured into water (50mL), extracted twice with ethyl acetate (50mL ⁇ 2), the organic phases were combined and washed with water (50mL) and saturated brine (50mL) successively to obtain the organic phase and concentrated under reduced pressure Got crude.
  • reaction solution was slowly poured into water (100 mL), extracted with ethyl acetate (100 mL ⁇ 3), the organic phases were combined, washed with saturated brine (100 mL), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to obtain the compound 20a.
  • the reaction solution was filtered through diatomaceous earth, the filter cake was washed with dichloromethane (25mL ⁇ 2), the organic phase was washed with water (50mL) and saturated brine (50mL) successively, the separated organic phase was dried with anhydrous sodium sulfate, and the pressure was reduced. concentrate.
  • Test example 1 Influenza virus cytopathic (CPE) test
  • MDCK cells were seeded into a black 384-well cell culture plate at a density of 2,000 cells per well, and then placed in a 37°C, 5% CO 2 incubator overnight.
  • the compound was diluted by the Echo555 non-contact nano-upgraded sonic pipetting system and added to the cell well (4-fold dilution, 8 test concentration points).
  • the corresponding influenza virus strains were then added to the cell culture wells at 1-290% tissue culture infectious dose (TCID90) per well, and the final concentration of DMSO in the medium was 0.5%.
  • Set up virus control wells add DMSO and virus, no compound
  • cell control wells add DMSO, no compound and virus
  • culture medium control wells only medium, no cells.
  • the cytotoxicity test and the antiviral activity test of the compound were performed in parallel, except that no virus was added, the other experimental conditions were consistent with the antiviral activity test.
  • the cell plate was placed in a 37°C, 5% CO 2 incubator for 5 days. After 5 days of culture, the cell viability test kit CCK8 was used to detect cell viability. The raw data is used to calculate the compound's antiviral activity and cytotoxicity.
  • the antiviral activity and cytotoxicity of the compound are represented by the inhibitory rate (%) of the compound on the cytoviral effect caused by the virus. Calculated as follows:
  • Table 1 The inhibitory activity of the compounds of the present invention on influenza A virus A/PR/8/34 (H1N1)
  • the compound of the present invention exhibits a positive effect in the test of inhibiting influenza virus replication at the cellular level.
  • the animal pharmacokinetic characteristics of the compound after intravenous injection and oral administration were tested by standard protocols.
  • the candidate compound was formulated into a clear solution (intravenous injection) or homogeneous suspension (oral administration), and the animal was given a single administration.
  • the vehicle for intravenous injection and oral administration is a certain proportion of dimethyl sulfoxide and polyethylene glycol (15)-hydroxystearate aqueous solution. Collect whole blood samples within 24 hours, centrifuge at 3200g for 10 minutes, separate the supernatant to obtain plasma samples, and use LC-MS/MS analysis method to quantitatively analyze the blood drug concentration, and calculate the pharmacokinetic parameters, such as peak concentration, peak time, Clearance rate, half-life, area under the drug-time curve, etc.
  • mice treatment model To evaluate the in vivo antiviral activity of the compound against influenza virus (IFV) by observing the weight change percentage and survival rate of the test animals in the mouse influenza A treatment model.
  • the mouse treatment model is widely used to determine the protective effect of compounds on virus-infected animals to reflect the compound's antiviral activity.
  • mice BALB/c strain
  • virus H1N1 virus strain A/PR/8/314
  • the inoculation dose was 1000 p.f.u./mouse.
  • a vehicle 5% DMSO + 10% polyethylene glycol-15 hydroxystearate + 85% water
  • 8B of mpk was treated continuously for 7 days, twice a day, and the administration method was gavage, 14 times in total, and the first administration time was 48 hours after virus inoculation. Continue to observe the animals from day 0 to day 14, record body weight, health and survival status.
  • the compound of the present invention exhibits a protective effect in an animal treatment model pharmacodynamic experiment.

Abstract

本发明公开了一类稠环衍生物,具体公开了式(I)所示化合物及其药学上可接受的盐。

Description

稠环衍生物及其在药学上的应用
本申请主张如下优先权
CN202010435705.1,申请日:2020-05-21;
CN202010699302.8,申请日:2020-07-20;
CN202010941000.7,申请日:2020-09-09;
CN202011257770.6,申请日:2020-11-11;
CN202110059299.8,申请日:2021-01-14。
技术领域
本发明涉及一类稠环衍生物,具体涉及式(I)所示化合物及其药学上可接受的盐。
背景技术
流行性感冒病毒,即流感病毒(influenza virus,IFV),是一种能够导致人和动物患流行感冒的分节状单链反义RNA病毒。流感病毒可引起非常高的发病率和死亡率,尤其A型流感病毒还能够导致全球性的大流行,比如1918~1920年的“西班牙流感”(H1N1亚型)、1957~1958年“亚洲流感”(H2N2亚型)、1968~1969年“亚洲流感”(H3N2亚型)、1977~1978年“香港流感”(H1N1亚型)以及2009年3月在墨西哥首先暴发的甲型H1N1流感。流感大爆发导致成千上万人死亡,引起巨大社会恐慌并增加社会不稳定因素。
A型流感病毒为单负链RNA病毒,基因组包含8个RNA片段,编码11种蛋白质:血凝素(HA)、神经氨酸酶(NA)、核蛋白(NP)、M1、M2、NS1、NS2、PA、PB1、PB1-F2和PB2。A型流感病毒根据病毒表面的血凝素(HA)和神经氨酸酶(NA)这两种蛋白可分为多个亚型。目前已知HA亚型有18种,NA亚型有11种。其中,流感病毒的血凝素(HA)负责识别宿主细胞的唾液酸糖蛋白,介导病毒外膜与细胞内小体膜融合释放病毒核衣壳进入胞浆。流感病毒的神经酰胺酶(NA)在复制过程中可除去病毒颗粒表面的唾液酸,使病毒颗粒不能继续在宿主细胞表面聚集,从而有利于病毒子的释放并进一步感染更多的宿主细胞。
流感病毒蛋白的合成是利用宿主细胞翻译机制,甚至病毒可以暂停宿主蛋白的翻译,加快自身蛋白的合成。病毒mRNA需要借用宿主mRNA5’端进行加帽才能开始翻译,这个过程称为“cap snatching”,主要通过病毒的RNA依赖性RNA聚合酶(RdRp)来完成,其PA亚基具有RNA内切酶活性,负责切断宿主mRNA。在完成了多聚腺苷酸化过程和加帽过程,病毒的mRNA即出核,进入细胞质,并像宿主细胞的mRNA一样进行翻译,病毒vRNA片段的核输出是由病毒的M1蛋白和NS2蛋白介导的,M1蛋白可以与vRNA和NP蛋白相互作用时,同时也与核输出蛋白NS2作用;由此,核输出蛋白NS2介导M1-RNP以核蛋白形式出核进入宿主细胞的细胞质。
目前的流感治疗选择包括接种疫苗和用抗病毒药物进行化疗和化学预防。经常向高危群体,例如儿童和老年人,或有哮喘、糖尿病或心脏病的人推荐接种抗流感的流感疫苗。但是接种疫苗不能完全避免患流感,并且流感病毒会发生一定程度的抗原漂移。如果超过一种病毒感染了单个细胞,则基因组中8个单独的vRNA片段发生混合或重配,所导致的病毒遗传学上的快速变化可产生抗原转变并使得病毒能感染新宿主物种并迅速克服保护性免疫。
抗病毒药物可以用于治疗流感,其中神经氨酸酶(NA)抑制剂,如奥司他韦(达菲),对于甲型流感病毒效果明显,但是经过临床观察发现,对于该类神经氨酸酶抑制剂已经出现了耐药的病毒株。在抗流感病毒领域,临床上亟需全新作用机制的抗流感病毒药物,能够支持单药使用治疗甲型流感,或者通过和已上市的其他作用机制的抗流感病毒药物联用,用于甲型流感的预防和治疗。其中WO2016175224报道了如下化合物及其前药:
Figure PCTCN2021094384-appb-000001
发明内容
本发明提供了式(I)所示化合物或其药学上可接受的盐,
Figure PCTCN2021094384-appb-000002
其中,
R 1选自H、C 1-3烷基、C 3-4环烷基和氧杂环丁烷;
各R 2分别独立地选自卤素、氰基、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1、2或3个卤素取代;
m选自0、1和2;
R 3选自
Figure PCTCN2021094384-appb-000003
苯基、5-6元杂芳基、C 1-3烷基和C 3-6环烷基,所述苯基、5-6元杂芳基、C 1-3烷基和C 3-6环烷基任选被1个、2个或3个R b取代;
R a选自苯基和苄基;
R b各自独立地选自H、卤素、羟基、氰基、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1、2或3个卤素取代;
R 4选自H、
Figure PCTCN2021094384-appb-000004
和-C(R c) 2-O-C(=O)-O-R d
R c各自独立地选自氢和C 1-3烷基;
R d选自氢和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R取代;
R各自独立地选自卤素、C 1-3烷基氨基、羟基和C 1-3烷氧基;
E 1选自-(CH 2) n-、-(CH 2) nO-和-CH=CH-CH 2O-;
各n选自1、2和3;
所述5-6元杂芳基包含1、2或3个独立选自O、S、N和NH的杂原子或杂原子团。
在本发明的一些方案中,上述R 1选自H、甲基、异丙基、环丙基、环丁基和
Figure PCTCN2021094384-appb-000005
其它变量如本发明所定义。
在本发明的一些方案中,上述R 2选自F、Cl、Br、甲基和甲氧基,所述甲基和甲氧基任选被1、2或3个卤素取代,其它变量如本发明所定义。
在本发明的一些方案中,上述R 2选自F、Cl和甲基,其它变量如本发明所定义。
在本发明的一些方案中,上述R 3选自苯基,所述苯基任选被1、2或3个R b取代,其它变量如本发明所定义。
在本发明的一些方案中,上述R 3选自
Figure PCTCN2021094384-appb-000006
Figure PCTCN2021094384-appb-000007
其它变量如本发明所定义。
在本发明的一些方案中,上述R c选自H,其它变量如本发明所定义。
在本发明的一些方案中,上述R d选自H、甲基、乙基和异丙基,其它变量如本发明所定义。
在本发明的一些方案中,上述R 4选自H、
Figure PCTCN2021094384-appb-000008
-CH 2-O-C(=O)-OH、-CH 2-O-C(=O)-OCH 3、-CH 2-O-C(=O)-OCH 2CH 3和-CH 2-O-C(=O)-OCH(CH 3) 2,其它变量如本发明所定义。
在本发明的一些方案中,上述E 1选自-CH 2-、-(CH 2) 3-、-CH 2O-、-(CH 2) 2O-、-(CH 2) 3O-和-CH=CH-CH 2O-,其它变量如本发明所定义。
本发明提供了式(I)所示化合物或其药学上可接受的盐,
Figure PCTCN2021094384-appb-000009
其中,
R 1选自H和C 1-3烷基;
各R 2分别独立地选自卤素、氰基、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1、2或3个卤素取代;
m选自0、1和2;
R 3选自
Figure PCTCN2021094384-appb-000010
苯基、5-6元杂芳基、C 1-3烷基和C 3-6环烷基,所述苯基、5-6元杂芳基、C 1-3烷基和C 3-6环烷基任选被1个、2个或3个R b取代;
R a选自苯基和苄基;
R b各自独立地选自卤素、羟基、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1、2或3个卤素取代;
R 4选自H和-C(R c) 2-O-C(=O)-O-R d
R c各自独立地选自氢和C 1-3烷基;
R d选自氢和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R取代;
R各自独立地选自卤素、C 1-3烷基氨基、羟基和C 1-3烷氧基;
E 1选自-(CH 2) n-和-(CH 2) nO-;
各n选自1、2和3;
所述5-6元杂芳基包含1、2或3个独立选自O、S和N的杂原子或杂原子团。
在本发明的一些方案中,上述R 1选自H和甲基,其它变量如本发明所定义。
在本发明的一些方案中,上述R 2选自F、Cl、Br、甲基和甲氧基,所述甲基和甲氧基任选被1、2或3个卤素取代,其它变量如本发明所定义。
在本发明的一些方案中,上述R 2选自F、Cl和甲基,其它变量如本发明所定义。
在本发明的一些方案中,上述R 3选自苯基,所述苯基任选被1、2或3个R b取代,其它变量如本发明所定义。
在本发明的一些方案中,上述R 3选自苯基,其它变量如本发明所定义。
在本发明的一些方案中,上述R c选自H,其它变量如本发明所定义。
在本发明的一些方案中,上述R d选自H、甲基和乙基,其它变量如本发明所定义。
在本发明的一些方案中,上述E 1选自-CH 2-、-(CH 2) 3-、-CH 2O-和-(CH 2) 2O-,其它变量如本发明所定义。
本发明提供了式(I)所示化合物或其药学上可接受的盐,
Figure PCTCN2021094384-appb-000011
其中,
R 1选自H、C 1-3烷基、C 3-4环烷基和氧杂环丁烷;
各R 2分别独立地选自卤素、氰基、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1、2或3个卤素取代;
m选自0、1和2;
R 3选自
Figure PCTCN2021094384-appb-000012
苯基、5-6元杂芳基、C 1-3烷基和C 3-6环烷基,所述苯基、5-6元杂芳基、C 1-3烷基和C 3-6环烷基任选被1个、2个或3个R b取代;
R a选自苯基和苄基;
R b各自独立地选自卤素、羟基、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1、2或3个卤素取代;
R 4选自H和-C(R c) 2-O-C(=O)-O-R d
R c各自独立地选自氢和C 1-3烷基;
R d选自氢和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R取代;
R各自独立地选自卤素、C 1-3烷基氨基、羟基和C 1-3烷氧基;
E 1选自-(CH 2) n-和-(CH 2) nO-;
各n选自1、2和3;
所述5-6元杂芳基包含1、2或3个独立选自O、S和N的杂原子或杂原子团。
在本发明的一些方案中,上述R 1选自H、甲基、环丙基、环丁基和
Figure PCTCN2021094384-appb-000013
其它变量如本发明所定义。
在本发明的一些方案中,上述R 4选自H、-CH 2-O-C(=O)-OH、-CH 2-O-C(=O)-OCH 3和-CH 2-O-C(=O)-OCH 2CH 3,其它变量如本发明所定义。
本发明提供了式(I)所示化合物或其药学上可接受的盐,
Figure PCTCN2021094384-appb-000014
R 1选自H、C 1-3烷基、C 3-4环烷基和氧杂环丁烷;
各R 2分别独立地选自卤素、氰基、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1、2或3个卤素取代;
m选自0、1和2;
R 3选自
Figure PCTCN2021094384-appb-000015
苯基、5-6元杂芳基、C 1-3烷基和C 3-6环烷基,所述苯基、5-6元杂芳基、C 1-3烷基和C 3-6环烷基任选被1个、2个或3个R b取代;
R a选自苯基和苄基;
R b各自独立地选自卤素、羟基、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1、2或3个卤素取代;
R 4选自H和-C(R c) 2-O-C(=O)-O-R d
R c各自独立地选自氢和C 1-3烷基;
R d选自氢、C 1-3烷基和-(CH 2CH 2O) 2CH 3,所述C 1-3烷基任选被1、2或3个R取代;
R各自独立地选自卤素、C 1-3烷基氨基、羟基和C 1-3烷氧基;
E 1选自-(CH 2) n-、-(CH 2) nO-和-CH=CH-CH 2O-;
各n选自1、2和3;
所述5-6元杂芳基包含1、2或3个独立选自O、S和N的杂原子或杂原子团。
在本发明的一些方案中,上述R 1选自H、甲基、异丙基、环丙基、环丁基和
Figure PCTCN2021094384-appb-000016
其它变量如本发明所定义。
在本发明的一些方案中,上述R d选自H、甲基、乙基、异丙基和-(CH 2CH 2O) 2CH 3。,其它变量如本发明所定义。
在本发明的一些方案中,上述R 4选自H、-CH 2-O-C(=O)-OH、-CH 2-O-C(=O)-OCH 3、-CH 2-O-C(=O)-OCH 2CH 3、-CH 2-O-C(=O)-OCH(CH 3) 2和-CH 2-O-C(=O)-O(CH 2CH 2O) 2CH 3,其它变量如本发明所定义。
在本发明的一些方案中,上述E 1选自-CH 2-、-(CH 2) 3-、-CH 2O-、-(CH 2) 2O-、-(CH 2) 3O-和-CH=CH-CH 2O-,其它变量如本发明所定义。
在本发明的一些方案中,上述R 2选自F、Cl和甲基,其它变量如本发明所定义。
在本发明的一些方案中,上述R 3选自苯基,所述苯基任选被1、2或3个R b取代,其它变量如本发明所定义。
在本发明的一些方案中,上述R 3选自苯基和对氟苯基,其它变量如本发明所定义。
本发明提供了式(I)所示化合物或其药学上可接受的盐,
Figure PCTCN2021094384-appb-000017
其中,
R 1选自H、C 1-3烷基、C 3-4环烷基和氧杂环丁烷;
各R 2分别独立地选自卤素、氰基、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1、2或3个卤素取代;
m选自0、1和2;
R 3选自
Figure PCTCN2021094384-appb-000018
苯基、5-6元杂芳基、C 1-3烷基和C 3-6环烷基,所述苯基、5-6元杂芳基、C 1-3 烷基和C 3-6环烷基任选被1个、2个或3个R b取代;
R a选自苯基和苄基;
R b各自独立地选自卤素、羟基、氰基、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1、2或3个卤素取代;
R 4选自H和-C(R c) 2-O-C(=O)-O-R d
R c各自独立地选自氢和C 1-3烷基;
R d选自氢和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R取代;
R各自独立地选自卤素、C 1-3烷基氨基、羟基和C 1-3烷氧基;
E 1选自-(CH 2) n-、-(CH 2) nO-和-CH=CH-CH 2O-;
各n选自1、2和3;
所述5-6元杂芳基包含1、2或3个独立选自O、S、N和NH的杂原子或杂原子团。
在本发明的一些方案中,上述R 1选自H、甲基、异丙基、环丙基、环丁基和
Figure PCTCN2021094384-appb-000019
其它变量如本发明所定义。
在本发明的一些方案中,上述R 2选自F、Cl、Br、甲基和甲氧基,所述甲基和甲氧基任选被1、2或3个卤素取代,其它变量如本发明所定义。
在本发明的一些方案中,上述R 2选自F、Cl和甲基,其它变量如本发明所定义。
在本发明的一些方案中,上述R 3选自苯基,所述苯基任选被1、2或3个R b取代,其它变量如本发明所定义。
在本发明的一些方案中,上述R 3选自
Figure PCTCN2021094384-appb-000020
Figure PCTCN2021094384-appb-000021
其它变量如本发明所定义。
在本发明的一些方案中,上述R c选自H,其它变量如本发明所定义。
在本发明的一些方案中,上述R d选自H、甲基、乙基和异丙基,其它变量如本发明所定义。
在本发明的一些方案中,上述R 4选自H、-CH 2-O-C(=O)-OH、-CH 2-O-C(=O)-OCH 3、-CH 2-O-C(=O)-OCH 2CH 3和-CH 2-O-C(=O)-OCH(CH 3) 2,其它变量如本发明所定义。
在本发明的一些方案中,上述E 1选自-CH 2-、-(CH 2) 3-、-CH 2O-、-(CH 2) 2O-、-(CH 2) 3O-和-CH=CH-CH 2O-,其它变量如本发明所定义。
本发明还有一些方案是由上述各变量任意组合而来。
本发明还提供式(V-1)、(V-2)、(V-3)和(VI-1)所述化合物或其药学上可接受的盐,
Figure PCTCN2021094384-appb-000022
其中,R 1、R 2、R 4、R b、m和n如本发明所定义。
本发明还提供下述化合物或其药学上可接受的盐,其选自:
Figure PCTCN2021094384-appb-000023
Figure PCTCN2021094384-appb-000024
本发明还提供了上述的化合物或其药学上可接受的盐,其选自:
Figure PCTCN2021094384-appb-000025
Figure PCTCN2021094384-appb-000026
本发明还提供了上述的化合物或其药学上可接受的盐,其选自:
Figure PCTCN2021094384-appb-000027
Figure PCTCN2021094384-appb-000028
Figure PCTCN2021094384-appb-000029
Figure PCTCN2021094384-appb-000030
本发明还提供了上述的化合物或其药学上可接受的盐在制备治疗流感病毒RNA内切酶抑制剂相关疾病的药物上的应用。
本发明还提供了上述的应用,其特征在于,所述RNA内切酶抑制剂相关药物是用于抗流感病毒的药物。
本发明还提供了如下合成路线:
Figure PCTCN2021094384-appb-000031
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、 钾、钙、铵、有机胺或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
除非另有规定,术语“C 1-3烷基”用于表示直链或支链的由1至3个碳原子组成的饱和碳氢基团。所述C 1-3烷基包括C 1-2和C 2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-3烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)等。
除非另有规定,术语“C 1-3烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。所述C 1-3烷氧基包括C 1-2、C 2-3、C 3和C 2烷氧基等。C 1-3烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)等。
除非另有规定,“C 3-6环烷基”表示由3至6个碳原子组成的饱和环状碳氢基团,其为单环和双环体系,所述C 3-6环烷基包括C 3-5、C 4-5和C 5-6环烷基等;其可以是一价、二价或者多价。C 3-6环烷基的实例包括,但不限于,环丙基、环丁基、环戊基、环己基等。
除非另有规定,“C 3-4环烷基”表示由3至4个碳原子组成的饱和环状碳氢基团,其为单环体系,其可以是一价、二价或者多价。C 3-4环烷基的实例包括,但不限于,环丙基、环丁基等。
除非另有规定,本发明术语“5-6元杂芳环”和“5-6元杂芳基”可以互换使用,术语“5-6元杂芳基”表示由5至6个环原子组成的具有共轭π电子体系的单环基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子。其中氮原子任选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O) p,p是1或2)。5-6元杂芳基可通过杂原子或碳原子连接到分子的其余部分。所述5-6元杂芳基包括5元和6元杂芳基。所述5-6元杂芳基的实例包括但不限于吡咯基(包括N-吡咯基、2-吡咯基和3-吡咯基等)、吡唑基(包括2-吡唑基和3-吡唑基等)、咪唑基(包括N-咪唑基、2-咪唑基、4-咪唑基和5-咪唑基等)、噁唑基(包括2-噁唑基、4-噁唑基和5-噁唑基等)、三唑基(1H-1,2,3-三唑基、2H-1,2,3-三唑基、1H-1,2,4-三唑基和4H-1,2,4-三唑基等)、四唑基、异噁唑基(3-异噁唑基、4-异噁唑基和5-异噁唑基等)、噻唑基(包括2-噻唑基、4-噻唑基和5-噻唑基等)、呋喃基(包括2-呋喃基和3-呋喃基等)、噻吩基(包括2-噻吩基和3-噻吩基等)、吡啶基(包括2-吡啶基、3-吡啶基和4-吡啶基等)、吡嗪基或嘧啶基(包括2-嘧啶基和4-嘧啶基等)。
除非另有规定,术语“卤代素”或“卤素”本身或作为另一取代基的一部分表示氟、氯、溴或碘原子。
除非另有说明,术语“异构体”意在包括几何异构体、顺反异构体、立体异构体、对映异构体、旋光异构体、非对映异构体和互变异构体。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“顺反异构体”或者“几何异构体”系由因双键或者成环碳原子单键不能自由旋转而引起。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子问为非镜像的关系的立体异构体。
除非另有说明,“(+)”表示右旋,“(-)”表示左旋,“(±)”表示外消旋。
除非另有说明,用楔形实线键
Figure PCTCN2021094384-appb-000032
和楔形虚线键
Figure PCTCN2021094384-appb-000033
表示一个立体中心的绝对构型,用直形实线键
Figure PCTCN2021094384-appb-000034
和直形虚线键
Figure PCTCN2021094384-appb-000035
表示立体中心的相对构型,用波浪线
Figure PCTCN2021094384-appb-000036
表示楔形实线键
Figure PCTCN2021094384-appb-000037
或楔形虚线键
Figure PCTCN2021094384-appb-000038
或用波浪线
Figure PCTCN2021094384-appb-000039
表示直形实线键
Figure PCTCN2021094384-appb-000040
或直形虚线键
Figure PCTCN2021094384-appb-000041
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降 低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
术语“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,取代基可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键。
当一个取代基数量为0时,表示该取代基是不存在的,比如-A-(R) 0表示该结构实际上是-A。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当一个取代基的键可以交叉连接到一个环上的两个以上原子时,这种取代基可以与这个环上的任意原子相键合,例如,结构单元
Figure PCTCN2021094384-appb-000042
表示其取代基R可在环己基或者环己二烯上的任意一个位置发生取代。当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。
当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure PCTCN2021094384-appb-000043
中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure PCTCN2021094384-appb-000044
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure PCTCN2021094384-appb-000045
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
除非另有规定,当某一基团具有一个或多个可连接位点时,该基团的任意一个或多个位点可以通过化学键与其他基团相连。当该化学键的连接方式是不定位的,且可连接位点存在H原子时,则连接化学键时,该位点的H原子的个数会随所连接化学键的个数而对应减少变成相应价数的基团。所述位点与其他基团连接的化学键可以用直形实线键
Figure PCTCN2021094384-appb-000046
直形虚线键
Figure PCTCN2021094384-appb-000047
或波浪线
Figure PCTCN2021094384-appb-000048
表示。例如-OCH 3中的直形实线键表示通过该基团中的氧原子与其他基团相连;
Figure PCTCN2021094384-appb-000049
中的直形虚线键表示通过该基团中的氮原子的两端与其他基团相连;
Figure PCTCN2021094384-appb-000050
中的波浪线表示通过该苯基基团中的1和2位碳原子与其他基团相连;
Figure PCTCN2021094384-appb-000051
表示该哌啶基上的任意可连接位点可以通过1个化学键与其他基团相连,至少包括
Figure PCTCN2021094384-appb-000052
这4种连接方式,即使-N-上画出了H原子,但是
Figure PCTCN2021094384-appb-000053
仍包括
Figure PCTCN2021094384-appb-000054
这种连接方式的基团,只是在连接1个化学键时,该位点的的H会对应减少1个变成相应的一价哌啶基。
术语“保护基”包括但不限于“氨基保护基”、“羟基保护基”或“巯基保护基”。术语“氨基保护基”是指适合用于阻止氨基氮位上副反应的保护基团。代表性的氨基保护基包括但不限于:甲酰基;酰基,例如链烷酰基(如乙酰基、三氯乙酰基或三氟乙酰基);烷氧基羰基,如叔丁氧基羰基(Boc);芳基甲氧羰基,如苄氧羰基(Cbz)和9-芴甲氧羰基(Fmoc);芳基甲基,如苄基(Bn)、三苯甲基(Tr)、1,1-二-(4′-甲氧基苯基)甲基;甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。术语“羟基保护基”是指适合用于阻止羟基副反应的保护基。代表性羟基保护基包括但不限于:烷基,如甲基、乙基和叔丁基;酰基,例如链烷酰基(如乙酰基);芳基甲基,如苄基(Bn),对甲氧基苄基(PMB)、9-芴基甲基(Fm)和二苯基甲基(二苯甲基,DPM);甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
Figure PCTCN2021094384-appb-000055
扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
本发明采用下述缩略词:aq.和H 2O代表水;eq代表当量、等量;Boc代表叔丁氧羰基;PE代表石油醚;ACN代表乙腈;EtOAc代表乙酸乙酯;EtOH代表乙醇;MeOH代表甲醇;Allyl代表烯丙基;DBU代表1,8-二氮杂环[5,4,0]十一烯-7;PPTS代表吡啶对甲苯磺酸盐;DMA代表二甲基乙酰胺;DMP代表戴斯-马汀氧化剂;T 3P代表1-丙基磷酸环酐;HPLC代表高效液相色谱;LCMS代表液相色谱-质谱联用;r.t.代表室温;mp代表熔点;℃代表摄氏度;h代表小时;mL代表毫升;mM代表毫摩尔每升;mmol代表毫摩尔;μmol代表微摩尔;HNMR代表核磁共振氢谱;MS代表质谱;min代表分钟;pH代表氢离子摩尔浓度负对数。
技术效果
本发明化合物在细胞水平抑制流感病毒复制试验中展示出积极效应,在动物治疗模型药效实验中展示出保护效应,同时药代动力学性质符合成药的要求。
附图说明
图1.化合物1与S-033447叠合模拟;
图2.化合物2与S-033447叠合模拟;
图3.化合物3与S-033447叠合模拟;
图4.化合物4与S-033447叠合模拟;
图5.化合物5与S-033447叠合模拟;
图6.化合物6与S-033447叠合模拟;
图7.化合物7与S-033447叠合模拟。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
计算例1
化合物1~7与S-033447叠合模拟:
Figure PCTCN2021094384-appb-000056
分子对接过程是通过使用Maestro(
Figure PCTCN2021094384-appb-000057
版本2017-2)中的GlideSP[1]和默认选项进行的。选择PDB ID代码为6FS6和6FS7的晶体结构作为对接模板。为了制备蛋白质,使用Maestro[2]的蛋白质制备向导模块添加氢原子,并使用OPLS3力场。对于配体的制备,生成了3D结构,并使用LigPrep进行了能量最小化[3]。使用6FS6和6FS7晶体结构中的配体质心生成
Figure PCTCN2021094384-appb-000058
对接网格。然后除去配体,并在分子对接过程中放置实例化合物。分析蛋白质受体与配体的相互作用类型,然后根据计算得到的docking scrore以及globalStrain值选择并保存了合理对接构象。化合物1~7与S-033447叠合模拟见说明书附图。
[1]Glide,
Figure PCTCN2021094384-appb-000059
LLC,New York,NY,2017.
[2]Maestro,
Figure PCTCN2021094384-appb-000060
LLC,New York,NY,2017.
[3]LigPrep,
Figure PCTCN2021094384-appb-000061
LLC,New York,NY,2017.
结论:本发明分子经过与模板蛋白的对接,能够形成关键的相互作用,包括与金属离子的配位键,π-π相互作用,以及疏水相互作用等。与参考分子S-033447在靶点空腔内部的构象相似,叠合较好。
实施例1
Figure PCTCN2021094384-appb-000062
合成路线:
Figure PCTCN2021094384-appb-000063
步骤1:化合物1a的合成
将1,3-丙二醇(25.0g,328.54mmol,23.81mL,1eq)溶于二甲基亚砜(120mL),往其中加入氢氧化钾(18.43g,328.54mmol,1eq)和对甲氧基苄氯(51.45g,328.54mmol,44.74mL,1eq),反应液在25℃下搅拌14小时。反应液与倒入125mL水中,用乙酸乙酯(150mL×2)萃取。有机相合并,经水(250mL)和饱和食盐水(250mL×3)洗涤,无水硫酸钠干燥后浓缩得到粗品。粗品经硅胶柱层析(石油醚/乙酸乙酯=100∶0-50∶50)纯化得到化合物1a。
1H NMR(400MHz,CDCl 3)δ=7.26(br d,J=8.6Hz,2H),6.89(br d,J=8.6Hz,2H),4.46(s,2H),3.81(s,3H),3.77(t,J=5.7Hz,2H),3.64(t,J=5.8Hz,2H),1.90-1.81(m,2H)。
步骤2:化合物1b的合成
将1a(10.0g,50.96mmol,1eq)溶于二氯甲烷(130mL),往其中缓慢分批加入DMP(22.69g,53.51mmol,16.56mL,1.05eq),反应液在25℃氮气保护下搅拌1小时。反应液用硅胶过滤,滤饼用二氯甲烷(25mL×4)洗涤,滤液合并浓缩。往浓缩后的滤液中加入石油醚/乙酸乙酯(5∶1,50mL),搅拌20分钟,过滤,滤饼用石油醚/乙酸乙酯(5∶1,30mL×2)洗涤,滤液合并浓缩。浓缩后的滤液按前面的操作重复三次后得到粗品。粗品经硅胶柱层析(石油醚/乙酸乙酯=100∶0-80∶20)纯化得到化合物1b。
1H NMR(400MHz,CDCl 3)δ=9.79(t,J=1.9Hz,1H),7.28-7.24(m,2H),6.92-6.86(m,2H),4.47 (s,2H),3.81(s,3H),3.81-3.78(m,2H),2.69(dt,J=1.9,6.1Hz,2H)。
步骤3:化合物1c的合成
25℃下,向装有MeCN(30mL)的三颈烧瓶中加入4,5-二氟水杨醛(40g,253.00mmol,1eq),对甲氧基苄氯(43.58g,278.30mmol,37.90mL,1.1eq),碳酸钾(52.45g,379.50mmol,1.5eq)后,开启搅拌,然后升温到55℃后持续反应3个小时。将反应液过滤除去不溶的杂质后,滤饼用二氯甲烷(2×50mL)洗涤,合并有机相并减压浓缩去除溶剂得粗产品。粗产品使用石油醚(200mL)和乙酸乙酯(20mL)在20℃下打浆,过滤得固体为化合物1c。
1H NMR(400MHz,CDCl 3)δ=10.36(d,J=3.0Hz,1H),7.66(t,J=9.7Hz,1H),7.34(d,J=8.8Hz,2H),6.97-6.85(m,3H),5.07(s,2H),3.83(s,3H)。
步骤4:化合物1d的合成
于0℃,氮气保护下往1c(35g,125.79mmol,1eq)的四氢呋喃(70mL)溶液中滴加苯基格氏试剂乙醚溶液(3M,44.03mL,1.05eq),然后反应温度升至20℃,并在此温度下搅拌4个小时。合并两个平行反应,然后向反应液中加入饱和氯化铵水溶液(80mL)淬灭反应,然后加入乙酸乙酯(4×90mL)萃取得有机相,有机相经无水硫酸钠干燥后减压浓缩得粗产品。粗品经硅胶柱层析(石油醚/乙酸乙酯=100∶0-70∶30)分离提纯,得到化合物1d。
1H NMR(400MHz,CDCl 3)δ=7.32-7.20(m,6H),7.11(d,J=8.5Hz,2H),6.91-6.84(m,2H),6.74(dd,J=6.5,12.0Hz,1H),5.99(d,J=4.8Hz,1H),4.88(s,2H),3.82(s,3H);
19F NMR(377MHz,CDCl 3)δ=-136.47--137.23(m,1F),-147.20--147.96(m,1F)。
步骤5:化合物1f的合成
将1e(100g,406.15mmol,1eq)加入到DMA(500mL)中,然后加入碳酸氢钠(40.94g,487.38mmol,18.96mL,1.2eq)和硫酸二甲酯(56.74g,449.85mmol,42.66mL,1.11eq),反应液在20℃下搅拌12个小时。加入水(750mL),用乙酸乙酯萃取两次(1000mL+500mL)。有机相合并,用水洗(450mL),饱和食盐水洗(300mL),无水硫酸钠干燥,过滤,滤液减压浓缩干。得到化合物1f,无需提纯直接用于下一步。
1H NMR(400MHz,CDCl 3)δ=7.74(d,J=5.6Hz,1H),7.45(br d,J=6.5Hz,2H),7.39-7.28(m,3H),6.47(d,J=5.5Hz,1H),5.30(s,2H),3.86(s,3H)。
步骤6:化合物1g的合成
将1f(126g,484.16mmol,1eq)加入到DMA(650mL)中,然后加入PPTS(316.35g,1.26mol,2.6eq),反应液在60℃下搅拌,然后滴加Boc-肼(83.18g,629.41mmol,1.3eq)的DMA(100mL)溶液,反应液继续在60℃下搅拌4个小时。反应液冷却到室温,搅拌下加入水(1.55L),用乙酸乙酯洗涤两次(2×1L),合并有机相,用饱和食盐水(1L)洗涤一次。减压浓缩后油状液体加入乙酸乙酯(500mL),搅拌下加入水(1L),有固体析出,过滤,用乙酸乙酯洗涤滤饼。干燥后得到化合物1g。
1H NMR(400MHz,CDCl 3)δ=7.35-7.30(m,2H),7.30-7.26(m,2H),7.25-7.21(m,2H),7.19(s,1H),6.35(d,J=7.9Hz,1H),5.18(s,2H),3.70(s,3H),1.38(s,9H)。
步骤7:化合物1h的合成
1g(20g,53.42mmol,1eq)加入到四氢呋喃(200mL)中,依次加入DBU(2.44g,16.03mmol,2.42mL,0.3eq)和甲胺醇溶液(50.28g,534.21mmol,33%浓度,10eq)。反应在60℃下反应12个小时。向反应液中加入二氯甲烷(50mL),并用柠檬酸水溶液(2×50mL)洗涤两次。有机相减压浓缩,往浓缩的溶液中加入乙酸乙酯(20mL),在20℃进行打浆2个小时,得到化合物1h。
步骤8:化合物1i的盐酸盐的合成
将1h(13g,34.82mmol,1eq)加入到乙酸乙酯(130mL)中,依次加入盐酸的乙酸乙酯溶液(4M,130mL,14.32eq)。反应在25℃下反应12个小时。反应液减压浓缩,除去溶剂。得到化合物1i的盐酸盐,无需提纯直接用于下一步。
1H NMR(400MHz,CD 3OD)δ=8.37(br d,J=7.3Hz,1H),7.47-7.34(m,5H),7.30-7.24(m,1H),5.24(s,2H),2.91(s,3H)。
步骤9:化合物1j的合成
往化合物1i的盐酸盐(800mg,2.58mmol,1eq)和1b(551.80mg,2.84mmol,1.1eq)的乙腈(8mL)悬浊液加入碳酸钾(1.43g,10.33mmol,4eq),在20℃下搅拌18个小时。反应液加入乙酸乙酯/水(1∶1,20mL)稀释,过滤,滤饼用水洗三次(3×5mL),乙酸乙酯洗三次(3×5mL)。滤液分相,有机相直接浓缩蒸干。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)分离提纯,产品组分浓缩后与先前所得滤饼合并,得到化合物1j。
1H NMR(400MHz,CDCl 3)δ=7.46(dd,J=1.6,7.7Hz,2H),7.28-7.21(m,6H),6.91(d,J=8.5Hz,2H),6.32(d,J=7.5Hz,1H),6.21(d,J=2.8Hz,1H),5.42(d,J=10.5Hz,1H),5.21(d,J=10.5Hz,1H),4.53-4.46(m,1H),4.46-4.38(m,2H),3.84(s,3H),3.46-3.37(m,1H),3.30(td,J=5.2,10.0Hz,1H),2.89(s,3H),1.58-1.41(m,2H)。
步骤10:化合物1k的合成
1j(800mg,1.78mmol,1eq)和1d(951.36mg,2.67mmol,1.5eq)溶于乙酸乙酯(25mL)中,加入T3P的乙酸乙酯溶液(2.27g,3.56mmol,2.12mL,浓度:50%,2eq),加热至65℃,搅拌12个小时。补加T 3P的乙酸乙酯溶液(1.13g,1.78mmol,1.06mL,50%浓度,1eq),继续搅拌30个小时,补加1d(317.12mg,889.88μmol,0.5eq),继续搅拌12个小时。反应液冷却至20℃,溶剂浓缩蒸干。加入二氯甲烷(15mL),有机相用水(2×20mL)洗两次后,加硅胶后浓缩蒸干。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)分离提纯,得到化合物1k。
步骤11:化合物1l的合成
1k(1.33g,1.69mmol,1eq)溶于预先混合好的盐酸(12M,557.04μL,3.96eq)的甲醇(12.8mL)溶液(~0.5M),于60℃搅拌14.5个小时。反应冷却至20℃,加入饱和碳酸氢钠水溶液(10mL),混合物用二氯甲烷/甲醇(10∶1,10mL×4)萃取四次。有机相合并后,加入硅胶浓缩蒸干。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)分离提纯,得到化合物1l。
步骤12:化合物1m的合成
1l(250mg,456.58μmol,1eq)先在乙腈中蒸干以除去水分,然后悬浮于二氯甲烷(4mL)中,20℃下往其中加入三苯基膦(179.63mg,684.87μmol,1.5eq)。反应在此温度下搅拌15分钟,然后加入四溴化碳(227.12mg,684.87μmol,1.5eq),体系变得澄清,继续搅拌14个小时。往反应液加入甲醇(2mL)淬灭,直接加入硅胶,浓缩蒸干。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)分离提纯,得到化合物1m。
步骤13:化合物1n的合成
1m(193mg,316.16μmol,1eq)溶于乙腈(1000mL)中,加入碳酸铯(2.06g,6.32mmol,20eq),在60℃下搅拌18个小时。反应液冷却至20℃,过滤,滤渣用乙腈(4×10mL)洗涤,滤液浓缩蒸干。粗品用制备薄层色谱(二氯甲烷/甲醇=20∶1)分离提纯,得到化合物1n。
1H NMR(400MHz,CDCl 3)δ=7.54(br d,J=6.8Hz,2H),7.33-7.21(m,3H),7.16-6.90(m,5H),6.86(dd,J=7.1,10.3Hz,1H),6.79-6.65(m,1H),6.52(d,J=7.8Hz,1H),5.67(d,J=7.8Hz,1H),5.40-5.29(m,2H),5.05(dd,J=7.1,11.4Hz,1H),4.87(s,1H),4.48-4.39(m,1H),4.07(td,J=2.8,11.4Hz,1H),2.94(s,3H),2.09-1.98(m,1H),1.88-1.81(m,1H);
19F NMR(377MHz,CDCl 3)δ=-133.79(br d,J=22.6Hz,1F),-139.65(br d,J=22.6Hz,1F)。
步骤14:化合物1A的合成
1n(20mg,37.77μmol,1eq)溶于二氯甲烷(1mL)中,加入无水氯化镁(71.92mg,755.38μmol,20eq),于20℃下搅拌15个小时。反应液用甲醇(2mL)稀释,过滤,滤渣用甲醇(2mL)润洗。粗品溶液经过制备反向液相色谱(分离柱:Phenomenex Gemini-NX C18 75*30mm*3μm;流动相:[H 2O(0.225%FA)-ACN];ACN%:25%-55%,7min)提纯,得到化合物1A。MS(ESI,m/z):440.0[M+1];
1H NMR(400MHz,CD 3OD)δ=7.23(br s,4H),7.16-7.07(m,2H),7.02(br d,J=7.4Hz,1H),5.71(br d,J=7.3Hz,1H),5.56(br t,J=8.9Hz,1H),5.41(s,1H),4.63(br d,J=4.9Hz,1H),4.25(br d,J=11.1Hz,1H),3.13(s,3H),2.22(br s,2H);
19F NMR(377MHz,CD 3OD)δ=-137.66(br d,J=19.8Hz,1F),-143.64(br d,J=22.6Hz,1F)。
实施例2
Figure PCTCN2021094384-appb-000064
合成路线:
Figure PCTCN2021094384-appb-000065
步骤1:化合物2a的合成
将1g(56g,149.58mmol,1eq)溶于乙醇(560mL)再加入氢氧化钠水溶液(2M,224.75mL,3.01eq),反应液在60℃下搅拌12个小时。反应完全后将反应液减压浓缩除去乙醇,然后加水(500mL),用乙酸乙酯(3×300mL)萃取三次。水相在搅拌下加入2M盐酸调节pH值,直到pH=4,此时有固体析出,过滤后得到化合物2a。
1H NMR(400MHz,CD 3OD)δ=7.78(d,J=7.8Hz,1H),7.48(br d,J=6.5Hz,2H),7.39-7.30(m,3H),6.57(br d,J=7.5Hz,1H),5.17(s,2H),1.50(br s,9H)。
步骤2:化合物2b的合成
将2a(30g,83.25mmol,1eq)加入到DMF(300mL)中,依次加入EDCI(23.94g,124.87mmol,1.5eq),HOBt(11.25g,83.25mmol,1eq)和环丁胺(8.88g,124.87mmol,10.70mL,1.5eq)。反应在60℃下反应12个小时。反应液用二氯甲烷(5×150mL)萃取五次,合并有机相用饱和食盐水(300mL)洗涤。有机相减压浓缩,用乙酸乙酯∶石油醚的混合溶液在20℃下打浆。得到化合物2b。
1H NMR(400MHz,CD 3OD)δ=7.75-7.68(m,1H),7.43(br d,J=6.5Hz,2H),7.38-7.30(m,3H),6.55-6.46(m,1H),5.16(s,2H),4.37(quin,J=8.3Hz,1H),2.32-2.21(m,2H),2.03-1.92(m,2H),1.82-1.67(m,2H),1.50(s,9H)。
步骤3:化合物2c的盐酸盐的合成
将2b(18g,43.53mmol,1eq)加入到乙酸乙酯(180mL)中,依次加入盐酸/乙酸乙酯(4M,180mL,14.32eq)。反应在25℃下反应12个小时。反应液减压浓缩,除去溶剂。得到化合物2c的盐酸盐,无需提纯直接用于下一步。
1H NMR(400MHz,CD 3OD)δ=8.39(d,J=7.3Hz,1H),7.49-7.42(m,2H),7.42-7.36(m,3H),7.31(d,J=7.1Hz,1H),5.25(s,2H),4.51-4.39(m,1H),2.40-2.28(m,2H),2.07-1.93(m,2H),1.86-1.70(m,2H)。
步骤4:化合物2d的合成
25℃下,往圆底烧瓶中加入乙腈(100mL),再缓慢加入2c的盐酸盐(8.90g,25.44mmol,1eq)和碳酸钾(14.07g,101.77mmol,4eq)以及1b(5.44g,27.99mmol,1.1eq),在氮气保护下,反应液于25℃下持续搅拌2小时。把反应液缓慢倒入水(100mL)中,用乙酸乙酯萃取两次(100mL×2),合并有机相并依次用水(100mL)和饱和食盐水(100mL)洗涤,得有机相并减压浓缩得粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)分离,得到化合物2d。
1H NMR(400MHz,CDCl 3)δ=7.41(dd,J=2.1,7.1Hz,2H),7.26-7.15(m,6H),6.89(d,J=8.6Hz,2H),6.26(d,J=7.6Hz,1H),6.04(br s,1H),5.46(d,J=10.8Hz,1H),5.15(d,J=10.8Hz,1H),4.80-4.65(m,1H),4.49(quin,J=8.9Hz,1H),4.41(s,2H),3.93-3.71(m,3H),3.52-3.19(m,2H),2.26-2.01(m,4H),1.75-1.58(m,2H),1.47(dt,J=4.8,9.8Hz,1H),1.20(tdd,J=3.9,10.4,14.6Hz,1H)。
步骤5:化合物2e的合成
将2d(3.00g,6.13mmol,1eq)和1d(2.18g,6.13mmol,1eq)溶于乙酸乙酯(75mL),往其中加入T 3P的乙酸乙酯溶液(7.80g,12.26mmol,7.29mL,浓度:50%,2eq),体系在70℃氮气保护下搅拌37小时,中途补加三次1d(3×1.46g,3×4.09mmol,3eq)和T 3P的乙酸乙酯溶液(3×2.60g,3×4.09mmol,3×2.43mL,浓度:50%,3eq)。反应液中加入乙酸乙酯(100mL)稀释,接着依次用水(100mL×2)和饱和食盐水(100mL×3)洗涤。有机相经无水硫酸钠干燥后浓缩得到粗品。粗品依次经过硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)和制备反向液相色谱(分离柱:Phenomenex Gemini-NX C18 75*30mm*3μm;流动相:[H 2O(0.225%FA)-ACN];ACN%:54%-84%,7min)纯化后得到化合物2e。
步骤6:化合物2f的合成
将2e(1.06g,1.28mmol,1eq)溶于盐酸甲醇溶液(0.5M,10mL,3.91eq)(量取4mL浓盐酸(37%),加入到92mL甲醇中,混合均匀后取10mL用于反应),反应液在60℃下搅拌20小时。反应液中加入碳酸氢钠固体至溶液pH=8,浓缩得到粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)纯化得到化合物2f。
步骤7:化合物2g的合成
将2f(410mg,697.74μmol,1eq)溶于二氯甲烷(5mL),往其中加入三苯基膦(274.52mg,1.05mmol,1.5eq),反应液在25℃下搅拌15分钟,加入四溴化碳(347.09mg,1.05mmol,1.5eq),反应液在25℃氮气保护下搅拌30分钟,补加三苯基膦(91.51mg,348.87μmol,0.5eq),反应液继续在25℃氮气保护下搅拌1小时。反应液中加入甲醇(2mL)淬灭后直接浓缩得到粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)纯化得到化合物2g。
步骤8:化合物2h的合成
将2g(50mg,76.86μmol,1eq)溶于乙腈(250mL),往其中加入碳酸铯(500.87mg,1.54mmol,20eq), 反应液在60℃下搅拌4小时,接着在70℃下搅拌2.5小时。反应液过滤,滤饼用乙腈(50mL×3)洗涤,滤液合并浓缩得到粗品。粗品经制备TLC(二氯甲烷/甲醇=20∶1)纯化得到化合物2h。
步骤9:化合物2A的合成
将2h(16mg,28.09μmol,1eq)溶于二氯甲烷(2mL),往其中加入无水氯化镁(53.49mg,561.80μmol,23.06μL,20eq),反应液在25℃下搅拌3.5小时。反应液直接浓缩得到粗品。粗品经制备反向液相色谱(分离柱:Phenomenex Gemini-NX C18 75mm*30mm*3μm;流动相:[水(0.225%FA)-ACN];ACN%:40%-60%,7min)纯化,得到化合物2A。该化合物核磁观察到有两个构象异构体,比例约为1∶1。MS(ESI,m/z):480.3[M+1];
1H NMR(400MHz,CD 3OD)δ=7.45-7.37(m,3H),7.27-7.08(m,9H),6.95(dd,J=7.2,10.2Hz,1H),6.90-6.78(m,2H),6.61(d,J=7.5Hz,1H),6.33(br d,J=7.5Hz,1H),5.76(s,1H),5.66(d,J=7.8Hz,1H),5.38-5.31(m,1H),5.06-5.01(m,1H),5.00(s,1H),4.59(br t,J=10.9Hz,1H),4.36(br d,J=11.3Hz,1H),4.22(br d,J=11.0Hz,2H),4.09(br s,1H),3.92(br t,J=8.9Hz,1H),3.22(quin,J=10.1Hz,1H),3.16-3.04(m,1H),2.07(br d,J=7.8Hz,4H),1.94(br d,J=9.0Hz,3H),1.68-1.49(m,7H)。
实施例3
Figure PCTCN2021094384-appb-000066
合成路线:
Figure PCTCN2021094384-appb-000067
步骤1:化合物3a的合成
向装有乙腈(650mL)的三颈烧瓶中加入水杨醛(40g,327.54mmol,34.78mL,1eq),对甲氧基苄氯(56.43g,360.30mmol,49.07mL,1.1eq),碳酸钾(67.90g,491.32mmol,1.5eq)后,在60℃下搅拌反应3个小时。将反应液过滤除去不溶物,滤饼用二氯甲烷洗涤三次(50mL×3),收集滤液,滤液减压浓缩得到粗产品。粗产品使用中加入石油醚(100mL)和乙酸乙酯(15mL)在20℃下打浆,得到化合物3a。
1H NMR(400MHz,CDCl 3)δ=10.52(s,1H),7.85(dd,J=1.8,7.8Hz,1H),7.54(ddd,J=1.9,7.2,8.5Hz,1H),7.37(d,J=8.8Hz,2H),7.09-7.01(m,2H),6.96-6.90(m,2H),5.12(s,2H),3.83(s,3H)。
步骤2:化合物3b的合成
于0℃下往3a(30g,123.83mmol,1eq)的四氢呋喃(80mL)溶液中滴加苯基格氏试剂乙醚溶液(3.0M,43.34mL,1.05eq),然后反应温度升至20℃,并在此温度下搅拌4小时。合并两个平行反应,向反应液中加入饱和氯化铵水溶液(100mL)淬灭反应,反应液用乙酸乙酯(90mL×3)萃取,合并有机相并减压浓缩得粗产品。粗产品经硅胶柱层析(石油醚/乙酸乙酯=100∶0-70∶30)分离纯化,得到化合物3b。
1H NMR(400MHz,CDCl 3)δ=7.38-7.26(m,7H),7.14(d,J=8.5Hz,2H),7.03-6.95(m,2H),6.91-6.86(m,2H),6.05(d,J=6.0Hz,1H),5.03-4.93(m,2H),3.84(s,3H),3.07(d,J=6.0Hz,1H),2.07(s,2H)。
步骤3:化合物3c的合成
25℃下,往圆底烧瓶中加入乙酸乙酯(40mL),再缓慢加入2c(4.02g,8.22mmol,1eq)和T3P的乙酸乙酯溶液(20.90g,32.84mmol,19.54mL,浓度:50%,4eq)以及3b(5.26g,16.421mmol,2eq),在氮气保护下,反应液于60℃下持续搅拌14小时。把反应液缓慢倒入水(100mL)中,用乙酸乙酯萃取两次(100mL×2),合并有机相并依次用水(100mL)和饱和食盐水(100mL)洗涤,得有机相并减压浓缩得粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)分离,得到化合物3c。
1H NMR(400MHz,CDCl 3)δ=7.78(dd,J=1.3,7.5Hz,1H),7.61-7.48(m,2H),7.48-7.28(m,3H),7.25-7.02(m,8H),7.01-6.62(m,9H),6.62-6.36(m,1H),5.90-5.73(m,1H),5.55-5.31(m,2H),5.19-4.75(m,3H),4.68-4.26(m,3H),3.85-3.77(m,6H),3.68-3.49(m,1H),3.44-3.26(m,1H),2.06-1.88(m,2H),1.67-1.56(m,1H),1.67-1.56(m,1H),1.55-1.21(m,4H)。
步骤4:化合物3d的合成
3c(3.3g,4.17mmol,1eq)溶于预先混合好的盐酸(12M,1.38mL,3.96eq)的甲醇(31.6mL)溶液(~0.5M),于60℃搅拌18个小时。反应冷却至20℃,加入碳酸氢钠固体调节pH至>7。用棉花过滤,加入硅胶后浓缩蒸干。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)分离,得到3d。
步骤5:化合物3e的合成
3d(930mg,1.69mmol,1eq)先在乙腈中蒸干以除去水分,然后悬浮于二氯甲烷(16mL)中,20℃下往其中加入三苯基膦(663.30mg,2.53mmol,1.5eq)。反应在此温度下搅拌15min,然后加入四溴化碳(838.65mg,2.53mmol,1.5eq),体系变得澄清。反应继续搅拌14个小时。往反应液加入甲醇(3mL)淬灭,直接加入硅胶,浓缩蒸干。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)分离,得到3e。
1H NMR(400MHz,CDCl 3)δ=7.95(br s,1H),7.54(d,J=7.3Hz,2H),7.49-7.40(m,4H),7.39-7.33(m,1H),7.28(br s,2H),7.26(br s,1H),7.07(br d,J=7.3Hz,1H),7.02-6.95(m,1H),6.84(br s,1H),6.71(t,J=7.5Hz,1H),6.65-6.59(m,1H),5.96(br d,J=7.5Hz,1H),5.84(br d,J=7.8Hz,1H),5.40(d,J=11.0Hz,1H),5.30-5.25(m,1H),4.78(dd,J=4.0,9.8Hz,1H),4.74-4.63(m,1H),3.50(br s,1H),3.40(dt,J=4.0,10.2Hz,1H),3.35-3.26(m,1H),2.19-2.01(m,2H),2.00-1.80(m,2H),1.70-1.50(m,4H)。
步骤6:化合物3f的合成
25℃下,往烧瓶中加入乙腈(500mL),再缓慢加入3e(100mg,162.73μmol,1eq)和碳酸铯(1.06g,3.25mmol,20eq),反应液于60℃持续搅拌4小时。把反应液缓慢倒入水(100mL)中,用乙酸乙酯萃取两次(100mL×2),合并有机相并依次用水(100mL)和饱和食盐水(100mL)洗涤,得有机相并减压浓缩得粗品。粗品经制备薄层色谱(二氯甲烷/甲醇=20∶1)分离,得到化合物3f。
步骤7:化合物3ga和3gb的合成
化合物3f经SFC(分离柱:Chiralpak AD-3 50×4.6mm I.D.,3μm;流动相:A[CO 2];B(0.05%DEA IPA)%:5%-40%,2min)分离得到化合物3ga(保留时间:1.953min)和3gb(保留时间:2.300min)。
步骤8:化合物3A的合成
25℃下,往圆底烧瓶中加入二氯甲烷(1mL),再缓慢加入3ga(10mg,18.74μmol,1eq)和无水氯化镁(35.68mg,374.80μmol,15.38μL,20eq),在氮气保护下,反应液于25℃持续搅拌3小时。减压浓 缩得粗品,粗品经制备反向液相色谱(分离柱:Phenomenex Gemini-NX C18 75*30mm*3μm;流动相:[水(0.225%FA)-ACN];ACN%:25%-55%,7min)分离纯化,得到化合物3A。该化合物核磁观察到有两个构象异构体,比例约为1∶1。MS(ESI,m/z):444.2[M+1];ee值:100%.
1H NMR(400MHz,CD 3OD)δ=7.45-7.32(m,5H),7.32-7.27(m,3H),7.24-7.10(m,8H),7.10-6.97(m,3H),6.62(d,J=7.5Hz,1H),6.28(d,J=7.5Hz,1H),5.89(s,1H),5.67(d,J=7.5Hz,1H),5.43-5.23(m,1H),5.08-4.98(m,2H),4.59(br t,J=11.5Hz,1H),4.33(br s,2H),4.23(br d,J=11.3Hz,1H),4.11(br s,1H),3.87(br t,J=8.4Hz,1H),3.28-3.15(m,1H),3.07(quin,J=10.0Hz,1H),2.11-1.98(m,8H),1.63-1.50(m,6H)。
步骤9:化合物3B的合成
25℃下,往圆底烧瓶中加入二氯甲烷(1mL),再缓慢加入3gb(10.00mg,18.74μmol,1eq)和无水氯化镁(35.68mg,374.80μmol,15.38μL,20eq),在氮气保护下,反应液于25℃持续搅拌3小时。减压浓缩得粗品,粗品经制备反向液相色谱(分离柱:Phenomenex Gemini-NX C18 75mm*30mm*3μm;流动相:[水(0.225%FA)-ACN];ACN%:25%-55%,7min)分离纯化,得到化合物3B。该化合物核磁观察到有两个构象异构体,比例约为1∶1。MS(ESI,m/z):444.2[M+1];ee值:98.15%.
1H NMR(400MHz,CD 3OD)δ=7.46-7.32(m,5H),7.32-7.27(m,3H),7.24-7.10(m,8H),7.10-6.97(m,3H),6.62(d,J=7.5Hz,1H),6.27(d,J=7.8Hz,1H),5.88(s,1H),5.67(d,J=7.5Hz,1H),5.32(dd,J=7.8,11.0Hz,1H),5.09-4.96(m,2H),4.59(br t,J=11.8Hz,1H),4.39-4.19(m,3H),4.10(br s,1H),3.94-3.76(m,1H),3.30-2.96(m,2H),2.09-1.99(m,8H),1.62-1.51(m,6H)。
实施例4
Figure PCTCN2021094384-appb-000068
合成路线:
Figure PCTCN2021094384-appb-000069
步骤1:化合物4a的合成
将3b(4.3g,13.42mmol,1eq)和2,6-二叔丁基-4-甲基吡啶(13.78g,67.11mmol,5eq)溶于二氯甲烷(140mL),在氮气保护下往其中加入氯化亚砜(4.79g,40.26mmol,2.92mL,3eq),添加完毕后反应液在25℃下搅拌1小时。反应液直接浓缩得到4a。粗品直接用于下一步。
1H NMR(400MHz,CDCl 3)δ=7.54(dd,J=1.5,7.8Hz,1H),7.39-7.34(m,2H),7.31-7.25(m,4H),7.24(s,1H),7.20(d,J=8.5Hz,2H),6.97(t,J=7.5Hz,1H),6.89-6.84(m,2H),6.58(s,1H),5.03-4.92(m,2H),3.80(s,3H)。
步骤2:化合物4b的合成
将2a(10g,27.75mmol,1eq)加入到DMF(100mL)中,依次加入EDCI(7.98g,41.62mmol,1.5eq),HOBt(3.75g,27.75mmol,1eq)和异丙胺(2.46g,41.62mmol,3.58mL,1.5eq)。反应在60℃下反应12个小时。反应液用二氯甲烷(30mL)萃取5次,合并有机相用饱和食盐水(30mL)洗涤。有机相减压浓缩,用乙酸乙酯∶石油醚的混合溶液在20℃下打浆,得到化合物4b。
1H NMR(400MHz,CD 3OD)δ=7.71(d,J=7.8Hz,1H),7.53-7.40(m,2H),7.42-7.23(m,1H),6.49(d,J=7.8Hz,1H),5.16(s,2H),4.18-3.93(m,1H),1.51(s,9H),1.13(d,J=6.6Hz,6H)。
步骤3:化合物4c的盐酸盐的合成
将4b(6.7g,16.69mmol,1eq)加入到乙酸乙酯(65mL)中,然后加入盐酸的乙酸乙酯溶液(4M,65mL,14.32eq),反应在25℃下反应12个小时。反应液减压浓缩,除去溶剂,得到化合物4c的盐酸盐,无需提纯直接用于下一步。
1H NMR(400MHz,CD 3OD)δ=8.40(dd,J=2.0,7.3Hz,1H),7.50-7.44(m,2H),7.43-7.36(m,3H),7.31(dd,J=2.3,7.1Hz,1H),5.25(s,2H),4.24-4.06(m,1H),1.20(d,J=6.6Hz,6H)。
步骤4:化合物4d的合成
将4c的盐酸盐(3.5g,10.36mmol,1eq)悬浮于乙腈(50mL),往其中加入碳酸钾(5.73g,10.36mmol,4eq),和1b(2.41g,12.43mmol,1.2eq),反应液在25℃下搅拌14小时。反应液缓慢倒入水(100mL)中,用乙酸乙酯(100mL×2)萃取。有机相合并,依次用水(100mL)和饱和食盐水(100mL)洗涤,经无水硫酸钠干燥后浓缩得粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)纯化得到化合物4d。
1H NMR(400MHz,CDCl 3)δ=7.46-7.40(m,2H),7.28-7.21(m,6H),6.90(d,J=8.5Hz,2H),6.27(d,J=7.5Hz,1H),5.92(s,1H),5.48(d,J=10.8Hz,1H),5.16(d,J=10.8Hz,1H),4.65(br d,J=10.3Hz,1H),4.49(td,J=6.8,13.6Hz,1H),4.41(s,2H),3.82(s,3H),3.44-3.36(m,1H),3.35-3.27(m,1H),1.60-1.48(m,1H),1.26(d,J=6.8Hz,3H),1.19(br d,J=7.0Hz,4H)。
步骤5:化合物4e的合成
将4d(3.20g,6.70mmol,1eq)和4a(19g,13.46mmol,纯度24%,2.01eq)溶于乙腈(270mL),往其中加入碳酸铯(6.55g,20.10mmol,3eq),反应液在40℃氮气保护下搅拌12小时,补加碳酸铯(2.18g,6.70mmol,1eq),反应液在40℃氮气保护下搅拌10小时。反应液过滤,滤饼用乙酸乙酯(50mL×2)洗涤,滤液合并浓缩。浓缩后的滤液用乙酸乙酯(200mL)溶解,经饱和食盐水(150mL×2)洗涤,无水硫酸钠干燥后浓缩得到粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)纯化得到化合物4e。
步骤6:化合物4f的合成
将4e(1.90g,2.44mmol,1eq)溶于盐酸甲醇溶液(0.5M,19mL,3.90eq)(量取4mL浓盐酸(37%),加入到92mL甲醇中,混合均匀后取19mL用于反应),反应液在60℃下搅拌22小时。反应液中加入碳酸氢钠至溶液pH=8,浓缩得到粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)纯化得到化合物4f。
步骤7:化合物4g的合成
将4f(455mg,843.19μmol,1eq)溶于二氯甲烷(5mL),往其中加入三苯基膦(331.73mg,1.26mmol,1.5eq),反应液在25℃下搅拌15分钟,加入四溴化碳(419.43mg,1.26mmol,1.5eq),反应液在25℃氮气保护下搅拌30分钟,补加三苯基膦(110.58mg,421.59μmol,0.5eq),反应液在25℃氮气保护下搅拌1小时。反应液中加入甲醇(2mL)淬灭后直接浓缩得到粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)纯化得到化合物4g。
步骤8:化合物4h的合成
将4g(60mg,99.58μmol,1eq)溶于乙腈(300mL),往其中加入碳酸铯(648.92mg,1.99mmol,20eq),反应液在60℃下搅拌18小时。反应液过滤,滤饼用乙腈(30mL×3)洗涤,滤液合并浓缩得到粗品。粗品经制备薄层色谱(二氯甲烷/甲醇=20∶1)纯化得到化合物4h。
步骤9:化合物4A的合成
将4h(8mg,15.34μmol,1eq)溶于二氯甲烷(2mL),往其中加入氯化镁(29.21mg,306.75μmol,12.59μL,20eq),反应液在25℃下搅拌14小时。反应液直接浓缩得到粗品。粗品经制备反向液相色谱(分离柱:Phenomenex Gemini-NX C18 75*30mm*3μm;流动相:[水(0.225%FA)-ACN];ACN%:30%-60%,7min)纯化,得到化合物4A。该化合物核磁观察到有两个构象异构体,比例约为3∶1。MS(ESI,m/z):432.2[M+1];
1H NMR(400MHz,CD 3OD)δ=7.83(d,J=7.5Hz,1H(主要构象,次要构象)),7.52-7.11(m,8H(主要构象,次要构象)),7.11-7.06(m,1H(主要构象)),6.97(d,J=7.5Hz,1H(主要构象)),6.96-6.92(m,1H(次要构象)),6.34(s,1H(次要构象)),6.30(d,J=7.5Hz,1H(次要构象)),5.71(d,J=7.5Hz,1H(主要构象)),5.60(dd,J=7.5,11.0Hz,1H(主要构象)),5.23(s,1H(主要构象)),4.66-4.64(m,1H(次要构象)),4.62-4.59(m,2H(主要构象)),4.43-4.35(m,1H(次要构象)),4.27-4.22(m,1H(主要构象)),3.72(br s,2H(次要构象)),2.40-1.96(m,2H(主要构象,次要构象)),1.55-1.42(m,6H(主要构象)),1.05(d,J=6.8Hz,3H(次要构象)),0.86(d,J=6.8Hz,3H(次要构象))。
实施例5
Figure PCTCN2021094384-appb-000070
合成路线:
Figure PCTCN2021094384-appb-000071
步骤1:化合物5A的合成
将1A(12mg,27.31μmol,1eq)溶于DMA(0.5mL),往其中加入碳酸钾(7.55mg,54.62μmol,2eq),碘化钾(4.53mg,27.31μmol,1eq)和氯甲基甲基碳酸酯(9.81mg,78.80μmol,2eq),然后加热至70℃,搅拌3个小时。补加氯甲基甲基碳酸酯(34.01mg,273.10μmol,26.16μL,10eq),继续搅拌1.5个小时,补加碳酸钾(37.74mg,273.10μmol,10eq),继续搅拌15个小时后补加氯甲基甲基碳酸酯(68.01mg,546.20μmol,52.32μL,20eq),搅拌1个小时后反应完毕。反应液冷却到室温,加入水(2mL),用乙酸 乙酯萃取(4mL×2)。有机相经饱和食盐水(2mL×2)洗涤两次,无水硫酸钠干燥后浓缩干得粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)纯化后,得到化合物5A。MS(ESI,m/z):528.1[M+1];
1H NMR(400MHz,CDCl 3)δ=7.25-7.09(m,5H),6.96(dd,J=7.2,10.4Hz,1H),6.86-6.78(m,1H),6.69(d,J=7.8Hz,1H),6.00(d,J=6.3Hz,1H),5.79(dd,J=4.1,7.2Hz,2H),5.34(br dd,J=6.9,11.2Hz,1H),5.06(s,1H),4.57(br t,J=11.9Hz,1H),4.20(br d,J=11.5Hz,1H),3.90(s,3H),3.07(s,3H),2.26-2.13(m,2H);
19F NMR(376MHz,CDCl 3)δ=-133.11--134.54(m,1F),-138.71--140.65(m,1F)。
实施例6
Figure PCTCN2021094384-appb-000072
合成路线:
Figure PCTCN2021094384-appb-000073
步骤1:化合物6A的合成
将4A(17mg,39.40μmol,1eq)溶于DMA(1mL),往其中加入氯甲基甲基碳酸酯(9.81mg,78.80μmol,2eq),碳酸钾(10.89mg,78.80μmol,2eq)和碘化钾(6.54mg,39.40μmol,1eq),反应液在70℃下搅拌3小时。反应液冷却到室温,加入水(10mL),用乙酸乙酯萃取(20mL×2)。有机相经水(20mL)和饱和食盐水(20mL×3)洗涤,无水硫酸钠干燥后浓缩干得粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)纯化后,得到化合物6A。该化合物核磁观察到有两个构象异构体,比例约为3∶2。MS(ESI,m/z):520.3[M+1];
1H NMR(400MHz,CDCl3)δ=7.59-7.01(m,9H(主要构象,次要构象)),6.84(br s,1H(次要构象)),6.69(d,J=7.8Hz,1H(主要构象)),6.36(d,J=7.9Hz,1H(次要构象)),6.04(br s,1H(次要构象)),6.02(d,J=6.5Hz,1H(次要构象)),5.97(d,J=6.5Hz,1H(主要构象)),5.88(d,J=6.4Hz,1H(次要构象)),5.80(dd,J=5.8,7.0Hz,2H(主要构象)),5.35(dd,J=7.3,11.3Hz,1H(主要构象)),5.14(s,1H(主要构象)),4.70-4.30(m,2H(主要构象,次要构象)),4.27-4.20(m,1H(主要构象)),4.15-4.00(m,1H(次要构象)),3.85(s,3H(主 要构象,次要构象)),3.70-3.55(m,1H(次要构象)),2.54-1.92(m,2H(主要构象,次要构象)),1.45(dd,J=6.8,10.6Hz,6H(主要构象)),0.91(d,J=7.0Hz,3H(次要构象)),0.76(br d,J=6.3Hz,3H(次要构象))。
实施例7
Figure PCTCN2021094384-appb-000074
合成路线:
Figure PCTCN2021094384-appb-000075
步骤1:化合物7aa和7ab的合成
化合物1n经SFC(分离柱:DAICEL CHIRALPAK AS(250mm*30mm,10μm);流动相:A[CO 2];B(0.1%NH 3H 2O EtOH)%:5%-40%)分离得到化合物7aa(保留时间:3.711min)和7ab(保留时间:4.859min)。
7aa:MS(ESI,m/z):530.3[M+1];ee值:100%
1H NMR(400MHz,CDCl 3)δ=7.68-7.60(m,2H),7.41-7.28(m,3H),7.23-6.86(m,6H),6.78(dd,J=8.7,10.4Hz,1H),6.59(d,J=7.8Hz,1H),5.70(d,J=8.0Hz,1H),5.45-5.33(m,2H),5.16(dd,J=7.0,11.3Hz,1H),4.92(s,1H),4.50(t,J=11.7Hz,1H),4.10(td,J=2.9,11.4Hz,1H),2.98(s,3H),2.12-1.97(m,1H),1.87-1.79(m,1H)。
7ab:MS(ESI,m/z):530.3[M+1];ee值:100%
1H NMR(400MHz,CDCl 3)δ=7.64(d,J=6.8Hz,2H),7.41-7.28(m,3H),7.24-6.87(m,6H),6.77(dd,J=8.7,10.4Hz,1H),6.60(d,J=7.8Hz,1H),5.71(d,J=7.8Hz,1H),5.43-5.31(m,2H),5.16(dd,J=7.0,11.3Hz,1H),4.92(s,1H),4.50(t,J=11.7Hz,1H),4.09(td,J=2.7,11.4Hz,1H),2.98(s,3H),2.11-1.97(m, 1H),1.82(br d,J=7.0Hz,1H)。
步骤2:化合物7A和7B的合成
将7aa(61mg,115.20μmol,1eq)溶于二氯甲烷(5mL),往其中加入无水氯化镁(150mg,1.58mmol,13.68eq),反应液在25℃下搅拌14小时。反应液直接浓缩得到粗品。粗品经制备反向液相色谱(分离柱:Phenomenex Gemini-NX C18 75mm*30mm*3μm;流动相:[水(0.225%FA)-ACN];ACN%:25%-55%,7min)纯化,得到化合物7A。MS(ESI,m/z):440.2[M+1];ee值:100%
1H NMR(400MHz,CD 3OD)δ=7.21(br s,5H),7.13-7.06(m,2H),6.99(d,J=7.5Hz,1H),5.68(d,J=7.5Hz,1H),5.54(t,J=9.2Hz,1H),5.39(s,1H),4.61(td,J=7.2,11.5Hz,1H),4.22(td,J=2.8,11.4Hz,1H),3.11(s,3H),2.24-2.15(m,2H)。
将7ab(58mg,109.53μmol,1eq)溶于二氯甲烷(2mL),往其中加入无水氯化镁(208.57mg,2.19mmol,20eq),反应液在25℃下搅拌3小时。反应液直接浓缩得到粗品。粗品经制备反向液相色谱(分离柱:Phenomenex Gemini-NX C18 75mm*30mm*3μm;流动相:[水(0.225%FA)-ACN];ACN%:25%-55%,7min)纯化,得到化合物7B。MS(ESI,m/z):440.2[M+1];ee值:100%
1H NMR(400MHz,CD 3OD)δ=7.48-6.83(m,8H),5.85-5.23(m,3H),4.65(br s,1H),4.27(br d,J=10.0Hz,1H),3.31-3.04(m,3H),2.40-1.98(m,2H)。
实施例8
Figure PCTCN2021094384-appb-000076
合成路线:
Figure PCTCN2021094384-appb-000077
步骤1:化合物8A和8B的合成
化合物5A经SFC(分离柱:DAICEL CHIRALCEL OJ-H(250mm*30mm,5μm);流动相:A[CO 2]; B(Neu-EtOH)%:15%-15%,min)分离得到化合物2A(保留时间:2.218min)和2B(保留时间:2.490min)。8A:MS(ESI,m/z):528.2[M+1];ee值:99.44%
1H NMR(400MHz,CDCl 3)δ=7.22(br d,J=2.5Hz,3H),7.15(br s,2H),6.96(dd,J=7.0,10.3Hz,1H),6.82(dd,J=8.5,10.5Hz,1H),6.69(d,J=7.8Hz,1H),5.99(d,J=6.5Hz,1H),5.79(d,J=3.0Hz,1H),5.77(d,J=1.8Hz,1H),5.36(dd,J=7.0,11.3Hz,1H),5.06(s,1H),4.58(t,J=11.4Hz,1H),4.20(td,J=2.9,11.5Hz,1H),3.89(s,3H),3.07(s,3H),2.25-2.12(m,1H),2.09-2.00(m,1H)。8B:MS(ESI,m/z):528.2[M+1];ee值:97.90%.
1H NMR(400MHz,CDCl 3)δ=7.22(br s,3H),7.15(br s,2H),6.96(dd,J=7.0,10.3Hz,1H),6.82(dd,J=8.8,10.3Hz,1H),6.69(d,J=7.8Hz,1H),5.99(d,J=6.3Hz,1H),5.79(dd,J=3.3,7.0Hz,2H),5.35(dd,J=6.9,11.4Hz,1H),5.06(s,1H),4.58(t,J=11.4Hz,1H),4.24-4.16(m,1H),3.90(s,3H),3.07(s,3H),2.27-2.14(m,1H),2.09-2.01(m,1H)。
实施例9
Figure PCTCN2021094384-appb-000078
合成路线:
Figure PCTCN2021094384-appb-000079
步骤1:化合物9b的合成
将镁屑(3.89g,160.00mmol,1eq)加入250毫升三口瓶中,体系用氮气置换三次,在氮气保护下加入碘(406.10mg,1.60mmol,322.30μL,0.01eq),加热至碘均匀铺满镁屑,停止加热,加入四氢呋喃(160mL)和9a(3g,17.14mmol,1.89mL,1eq),加热至75℃引发反应,反应温度降至70℃,往其中缓慢滴加9a(25g,142.86mmol,15.72mL,1eq),滴加完毕,反应液在70℃下继续搅拌2小时,冷却至室温。将上述反应液取上层澄清液(0.89M,120.13mL,2.97eq),在0℃下缓慢滴加入1c(10.0g,35.94mmol,1eq)溶于四氢呋喃(100mL)的溶液中(历时1.5小时),滴加完毕,反应液在25℃下搅拌2小时。然后向反应液中加入饱和氯化铵水溶液(150mL)淬灭反应,然后加入乙酸乙酯(3×200mL)萃取得有机相,有机相经无水硫酸钠干燥后减压浓缩得粗产品。粗品经硅胶柱层析(石油醚/乙酸乙酯=1∶0-6∶1)分离提纯,得到化合物9b。
1H NMR(400MHz,CDCl 3)δ=7.37-7.28(m,3H),7.20(d,J=8.8Hz,2H),7.11-7.02(m,2H),6.99-6.92(m,2H),6.83(dd,J=6.5,11.8Hz,1H),6.03(d,J=4.8Hz,1H),4.96(s,2H),3.90(s,3H),2.67(d,J=4.8Hz,1H)。
步骤2:化合物9c的合成
1j(4.9g,10.90mmol,1eq)和9b(4.08g,10.90mmol,1eq)溶于乙酸乙酯(120mL)中,加入T 3P的乙酸乙酯溶液(13.87g,21.80mmol,12.97mL,浓度:50%,2eq),加热至75℃,搅拌5小时。补加9b(4.08g,10.90mmol,1eq)和T 3P的乙酸乙酯溶液(6.94g,10.90mmol,6.48mL,50%浓度,1eq),继续搅拌14小时,补加9b(4.08g,10.90mmol,1eq),继续搅拌6小时。反应液冷却至20℃,加入乙酸乙酯(200mL)稀 释,接着依次用水(2×300mL)和饱和食盐水(3×300mL)洗涤,有机相经无水硫酸钠干燥后浓缩得到粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=1∶0-10∶1)分离提纯,得到化合物9c。
步骤3:化合物9d的合成
9c(9.3g,11.54mmol,1eq)溶于盐酸甲醇溶液(1M,10mL,3.91eq)(量取10mL浓盐酸(37%),加入到110mL甲醇中,混合均匀后取93mL用于反应),于70℃搅拌6小时。反应冷却至20℃,加入饱和碳酸氢钠水溶液至pH=8,混合物用二氯甲烷/甲醇(10∶1,100mL×4)萃取。有机相合并后经无水硫酸钠干燥后浓缩得到粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=1∶0-10∶1)分离提纯,得到化合物9d。
1H NMR(400MHz,CD 3OD)δ=7.61(dd,J=5.3,8.6Hz,2H),7.41-7.32(m,3H),7.30-7.24(m,3H),7.20(t,J=8.7Hz,2H),7.12(dd,J=9.1,11.4Hz,1H),6.50(dd,J=6.9,11.8Hz,1H),6.09(d,J=7.6Hz,1H),5.89(s,1H),5.33(d,J=10.8Hz,1H),5.14(d,J=10.8Hz,1H),4.61-4.55(m,1H),3.63-3.55(m,1H),3.43(td,J=5.5,11.0Hz,1H),2.95(s,3H),1.41-1.31(m,1H),1.29-1.18(m,1H)。
步骤4:化合物9e的合成
将9d(1.00g,1.77mmol,1eq)溶于二氯甲烷(20mL),往其中加入三苯基膦(695.68mg,2.65mmol,1.5eq),反应液在25℃下搅拌15分钟,加入四溴化碳(879.59mg,2.65mmol,1.5eq),反应液在25℃氮气保护下12小时。反应液中加入甲醇(10mL)淬灭后直接浓缩得到粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=1∶0-20∶1)纯化得到化合物9e。
1H NMR(400MHz,CDCl 3)δ=9.49(br s,1H),7.50(dd,J=5.2,8.4Hz,2H),7.36-7.31(m,2H),7.25-7.20(m,3H),7.16(t,J=8.5Hz,2H),6.97-6.77(m,3H),6.08(d,J=7.6Hz,1H),5.82(br s,1H),5.35(d,J=11.1Hz,1H),5.10(d,J=11.1Hz,1H),4.53(dd,J=5.6,8.0Hz,1H),3.35-3.17(m,2H),2.99(s,3H),1.64-1.52(m,2H)。
步骤5:化合物9f的合成
将碳酸铯(554.75mg,1.70mmol,2.14eq)溶于乙腈(50mL),体系加热至80℃,每隔5分钟加入1/25的9e(500mg,795.63μmol,1eq)溶于乙腈(50mL)的溶液(历时2小时)。添加完毕,反应液在80℃下搅拌1.5小时。反应液冷却至室温,加入水(50mL),用二氯甲烷(3×100mL)萃取。有机相合并,经无水硫酸钠干燥后浓缩得到粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=1∶0-20∶1)纯化得到化合物9f。
1H NMR(400MHz,CDCl 3)δ=7.67-7.58(m,2H),7.42-7.28(m,3H),7.16-6.74(m,6H),6.58(d,J=7.8Hz,1H),5.79(d,J=7.8Hz,1H),5.52-5.38(m,2H),5.13(dd,J=7.3,11.3Hz,1H),4.91(s,1H),4.51(t,J=11.5Hz,1H),4.19-4.11(m,1H),3.01(s,3H),2.14-2.01(m,1H),1.97-1.87(m,1H)。
步骤6:化合物9A的合成
将9f(15mg,27.40μmol,1eq)溶于二氯甲烷(1mL),往其中加入无水氯化镁(52.17mg,547.92μmol,22.49μL,20eq),反应液在25℃下搅拌4小时。反应液直接浓缩得到粗品。粗品经制备反向液相色谱(分离柱:Phenomenex Gemini-NX C18 75mm*30mm*3μm;流动相:[水(0.225%FA)-ACN];ACN%:30%-60%,7min)纯化,得到化合物9A。MS(ESI,m/z):458.1[M+1];
1H NMR(400MHz,DMSO-d6)δ=7.45(dd,J=9.2,11.4Hz,1H),7.30(br dd,J=7.5,11.3Hz,3H),7.05(br t,J=8.5Hz,2H),6.81(d,J=7.8Hz,1H),5.56-5.47(m,2H),5.45(s,1H),4.54(br t,J=11.8Hz,1H),4.15 (br d,J=11.0Hz,1H),2.96(s,3H),2.16(br dd,J=7.0,16.3Hz,1H),2.00-1.86(m,1H);
19F NMR(377MHz,DMSO-d6)δ=-113.45(s,1F),-136.18(br d,J=20.8Hz,1F),-142.04--142.15(m,1F)。
实施例10
Figure PCTCN2021094384-appb-000080
合成路线:
Figure PCTCN2021094384-appb-000081
步骤1:化合物10aa和10ab的合成
化合物9f经SFC(分离柱:DAICEL CHIRALPAK AS(250mm*30mm,10μm);流动相:A[CO 2];B(0.1%NH 3H 2O EtOH)%:50%-50%)分离得到化合物10aa(保留时间:3.409min)和10ab(保留时间:4.496min)。
10aa:MS(ESI,m/z):548.1[M+1];ee值:100%
1H NMR(400MHz,CDCl 3)δ=7.68-7.56(m,2H),7.40-7.27(m,3H),7.23-6.62(m,5H),7.23-6.62(m,1H),6.57(d,J=7.8Hz,1H),5.78(d,J=7.8Hz,1H),5.55-5.33(m,2H),5.12(dd,J=7.3,11.3Hz,1H),4.90(s,1H),4.51(t,J=11.4Hz,1H),4.14(td,J=2.8,11.5Hz,1H),2.99(s,3H),2.14-1.82(m,2H)。
10ab:MS(ESI,m/z):548.1[M+1];ee值:100%
1H NMR(400MHz,CDCl 3)δ=7.63(d,J=6.8Hz,2H),7.41-7.30(m,3H),7.22-6.70(m,6H),6.58(d,J=7.8Hz,1H),5.79(d,J=7.8Hz,1H),5.55-5.40(m,2H),5.13(dd,J=7.2,11.4Hz,1H),4.92(s,1H),4.53(t,J=11.7Hz,1H),4.19-4.12(m,1H),3.01(s,3H),2.15-2.02(m,1H),1.92(br dd,J=7.2,15.4Hz,1H)。
步骤2:化合物10A和10B的合成
将10aa(150mg,273.96μmol,1eq)溶于二氯甲烷(2mL),往其中加入无水氯化镁(521.68mg,5.48mmol,20eq),反应液在25℃下搅拌3小时。反应液直接浓缩得到粗品。粗品经制备反向液相色谱(分离柱:Phenomenex Gemini-NX C18 75mm*30mm*3μm;流动相:[水(0.225%FA)-ACN];ACN%:30%-60%,7min)纯化,得到化合物10A。MS(ESI,m/z):458.1[M+1];ee值:100%
1H NMR(400MHz,CD 3OD)δ=7.25(br s,2H),7.16-7.07(m,2H),7.03(d,J=7.5Hz,1H),6.94(br t,J=8.2Hz,2H),5.77(d,J=7.5Hz,1H),5.54(t,J=9.3Hz,1H),5.41(s,1H),4.67-4.53(m,1H),4.22(td,J=2.9,11.5Hz,1H),3.10(s,3H),2.32-2.05(m,2H);
19F NMR(377MHz,CD 3OD)δ=-114.42(s,1F),-135.98--138.84(m,1F),-142.46--145.14(m,1F)。
将10ab(166mg,303.18μmol,1eq)溶于二氯甲烷(10mL),往其中加入无水氯化镁(577.32mg,6.06mmol,20eq),反应液在25℃下搅拌14小时。反应液直接浓缩得到粗品。粗品经制备反向液相色谱(分离柱:Phenomenex Gemini-NX C18 75mm*30mm*3μm;流动相:[水(0.225%FA)-ACN];ACN%:30%-60%,7min)纯化,得到化合物10B。MS(ESI,m/z):458.1[M+1];ee值:100%.
1H NMR(400MHz,CD 3OD)δ=7.39-7.08(m,4H),7.03(d,J=7.5Hz,1H),6.95(br t,J=8.2Hz,2H),5.77(d,J=7.5Hz,1H),5.54(t,J=9.3Hz,1H),5.42(s,1H),4.66-4.56(m,1H),4.22(td,J=2.9,11.4Hz,1H),3.10(s,3H),2.22-2.13(m,2H);
19F NMR(377MHz,CD 3OD)δ=-114.44(s,1F),-137.37--137.45(m,1F),-143.41--143.52(m,1F)。
实施例11
Figure PCTCN2021094384-appb-000082
合成路线:
Figure PCTCN2021094384-appb-000083
步骤1:化合物11A的合成
将化合物7B(7.5mg,17.07μmol,1eq)溶于丙酮(0.5mL),往其中加入碳酸铯(27.81mg,85.34μmol,5eq)和11a(8.33mg,34.14μmol,2eq),反应液在25℃下搅拌4小时。反应液过滤,滤液经制备硅胶板(二氯甲烷/甲醇=15∶1)纯化得到化合物11A。
MS(ESI,m/z):556.2[M+1];
1H NMR(400MHz,CD 3OD)δ=7.39-7.17(m,5H),7.13(dd,J=7.3,11.0Hz,1H),7.08-7.01(m,2H),5.85(d,J=7.5Hz,1H),5.78(d,J=6.8Hz,1H),5.67(d,J=6.8Hz,1H),5.52(t,J=9.2Hz,1H),5.21(s,1H),4.95-4.91(m,1H),4.60-4.56(m,1H),4.28-4.19(m,1H),3.07(s,3H),2.21-2.17(m,2H),1.35-1.33(m,6H)。
实施例12
Figure PCTCN2021094384-appb-000084
合成路线:
Figure PCTCN2021094384-appb-000085
步骤1:化合物12A的合成
将化合物7B(25mg,56.89μmol,1eq)溶于N,N-二甲基乙酰胺(1mL),往其中加入碳酸钾(15.73mg,113.79μmol,2eq)、碘化钾(9.44mg,56.89μmol,1eq)和12a(16.90mg,113.79μmol,2eq),反应液在70℃下搅拌3小时。补加12a(16.90mg,113.79μmol,2eq),反应液在70℃下搅拌2小时。反应液冷却到室温,加入水(30mL),用乙酸乙酯萃取(30mL×2)。有机相经水(50mL)和饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥后浓缩干得粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=1∶0-20∶1)纯化得到化合物12A。
MS(ESI,m/z):552.3[M+1];
1H NMR(400MHz,CDCl 3)δ=7.27-7.02(m,5H),6.95(dd,J=7.0,10.4Hz,1H),6.85(dd,J=8.6,10.4Hz,1H),6.71(d,J=7.9Hz,1H),5.80(d,J=7.8Hz,1H),5.29(br dd,J=7.0,11.3Hz,1H),5.25-5.12(m,2H), 5.02(s,1H),4.58(br t,J=11.9Hz,1H),4.20(br d,J=11.4Hz,1H),3.08(s,3H),2.27-2.12(m,4H),2.04(br dd,J=6.6,15.3Hz,1H)。
实施例13
Figure PCTCN2021094384-appb-000086
合成路线:
Figure PCTCN2021094384-appb-000087
步骤1:化合物13A的合成
将化合物10B(89mg,194.58μmol,1eq)溶于N,N-二甲基乙酰胺(2mL),往其中加入碳酸钾(53.79mg,389.16μmol,2eq)、碘化钾(32.30mg,194.58μmol,1eq)和氯甲基甲基碳酸酯(48.46mg,389.16μmol,2eq),反应液在70℃下搅拌3小时。反应液冷却到室温,加入水(30mL),用乙酸乙酯萃取(30mL×2)。有机相经水(50mL)和饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥后浓缩干得粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=1∶0-20∶1)纯化得到化合物13A。MS(ESI,m/z):546.1[M+1];
1H NMR(400MHz,CDCl 3)δ=7.15(br s,2H),7.01-6.87(m,3H),6.81(dd,J=8.7,10.2Hz,1H),6.70(d,J=7.8Hz,1H),5.95(d,J=6.5Hz,1H),5.86(br d,J=7.8Hz,1H),5.77(d,J=6.5Hz,1H),5.47-5.36(m,1H),5.03(s,1H),4.60(br t,J=11.4Hz,1H),4.20(br d,J=11.3Hz,1H),3.87(s,3H),3.05(s,3H),2.22-2.02(m,2H)。
实施例14
Figure PCTCN2021094384-appb-000088
合成路线:
Figure PCTCN2021094384-appb-000089
步骤1:化合物14a的合成
-15℃下,往圆底烧瓶中加入四氢呋喃(60mL),再缓慢加入2-氟-1-碘苯(8.5g,38.29mmol,4.47mL,1eq)和异丙基氯化镁氯化锂(1.3M,29.45mL,1.0eq),在氮气保护下,反应液于-15℃持续搅拌0.5小时。然后加入4,5-二氟水杨醛(1.82g,11.49mmol,0.3eq)的四氢呋喃(30mL)溶液,并在-15℃下继续搅拌0.5小时。反应液缓慢倒入饱和氯化铵(100mL)中,用乙酸乙酯(100mL×2)萃取,合并有机相并依次用水 (100mL)和饱和食盐水(100mL)洗涤,有机相减压浓缩得粗品。粗品经硅胶柱层析(石油醚/乙酸乙酯=1∶0-5∶1)分离提纯,得到化合物14a。
1H NMR(400MHz,CDCl 3)δ=8.08(br s,1H),7.44-7.29(m,2H),7.23-7.05(m,2H),6.81-6.57(m,2H),6.27(s,1H),3.22(br s,1H)。
步骤2:化合物14b的合成
将1j(5g,11.12mmol,1eq)、14a(7.54g,22.25mmol,75%purity,2eq)、S-联萘酚磷酸酯(3.87g,11.12mmol,1eq)和R-联萘酚磷酸酯(3.87g,11.12mmol,1eq)溶于1,2-二氯乙烷(50mL)中,反应液在60℃下搅拌14小时。反应液加入二氯甲烷(300mL)稀释,用饱和碳酸钠溶液(250mL)洗涤,有固体产生,过滤。滤液再用饱和食盐水(250mL)洗涤,经无水硫酸钠干燥后浓缩。粗品经硅胶柱层析(二氯甲烷/甲醇=1∶0-20∶1)分离提纯,得到化合物14b。MS(ESI,m/z):686.2[M+1]。
步骤3:化合物14c的合成
将14b(3.5g,5.10mmol,1eq)溶于盐酸甲醇溶液(1M,35.00mL,6.86eq)和1,2-二氯乙烷(35mL),于70℃搅拌3.5小时。反应冷却至20℃,加入饱和碳酸氢钠水溶液至pH=8,混合物用二氯甲烷/甲醇(10∶1,200mL×4)萃取。有机相合并后经无水硫酸钠干燥后浓缩得到粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=1∶0-10∶1)分离提纯,得到化合物14c。
1H NMR(400MHz,CD 3OD)δ=7.97(dt,J=1.8,7.4Hz,1H),7.47-7.35(m,4H),7.35-7.32(m,1H),7.31-7.22(m,3H),7.21-7.04(m,2H),6.50(dd,J=6.8,11.8Hz,1H),6.26(s,1H),6.08(d,J=7.8Hz,1H),5.33(d,J=10.8Hz,1H),5.15(d,J=10.8Hz,1H),4.59(dd,J=6.1,7.7Hz,1H),3.59(ddd,J=4.8,6.8,11.2Hz,1H),3.42(ddd,J=4.8,6.5,11.1Hz,1H),2.97(s,3H),1.41-1.22(m,2H)。
步骤4:化合物14d的合成
将14c(1.29g,2.28mmol,1eq)溶于二氯甲烷(25mL),往其中加入三苯基膦(897.43mg,3.42mmol,1.5eq),反应液在25℃下搅拌15分钟,加入四溴化碳(897.43mg,3.42mmol,1.5eq),反应液在25℃氮气保护下2小时。反应液中加入甲醇(5mL)淬灭后直接浓缩得到粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=1∶0-20∶1)纯化得到化合物14d。
1H NMR(400MHz,CDCl 3)δ=9.66(br s,1H),7.77(br s,1H),7.47-7.36(m,3H),7.32(br t,J=7.3Hz,3H),7.26-7.05(m,3H),7.02-6.91(m,1H),6.75-6.64(m,1H),6.22-6.08(m,2H),5.37(d,J=11.0Hz,1H),5.22(br d,J=11.0Hz,1H),4.54-4.46(m,1H),3.36-3.28(m,1H),3.27-3.20(m,1H),3.03(s,3H),1.70-1.59(m,2H)。
步骤5:化合物14e的合成
将碳酸铯(758.54mg,2.33mmol,2.14eq)溶于乙腈(68.5mL),体系加热至80℃,每隔5分钟加入1/25的14d(685mg,1.09mmol,1eq)溶于乙腈(68.5mL)的溶液(历时2小时)。添加完毕,反应液在80℃下搅拌80分钟。反应液冷却至室温,加入水(200mL),用二氯甲烷(3×250mL)萃取。有机相合并,经无水硫酸钠干燥后浓缩得到粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=1∶0-20∶1)纯化得到化合物14e。
1H NMR(400MHz,CDCl 3)δ=7.65(br d,J=7.0Hz,2H),7.55-7.42(m,1H),7.40-7.28(m,3H),7.25-7.17(m,1H),7.07(br s,1H),6.98-6.79(m,3H),6.69(br s,1H),5.87(d,J=7.5Hz,1H),5.65(br s,1H), 5.39(d,J=10.0Hz,1H),5.27(br d,J=10.0Hz,1H),5.18(br dd,J=7.0,11.0Hz,1H),4.52(t,J=11.9Hz,1H),4.14(br d,J=11.8Hz,1H),3.03(s,3H),2.12(br d,J=12.8Hz,1H),1.92(br dd,J=6.8,15.1Hz,1H)。
步骤6:化合物14fa和14fb的合成
化合物14e经SFC(分离柱:DAICEL CHIRALPAK AS(250mm*30mm,10μm);流动相:A[CO 2];B(0.1%NH 3H 2O EtOH)%:50%-50%)分离得到化合物14fa(保留时间:3.646min)和14fb(保留时间:4.929min)。
14fa:MS(ESI,m/z):548.1[M+1];ee值:100%
1H NMR(400MHz,CDCl 3)δ=7.66(br d,J=7.3Hz,2H),7.47(br s,1H),7.40-7.28(m,3H),7.24-7.15(m,1H),7.07(br s,1H),6.98-6.78(m,3H),6.67(br s,1H),5.80(d,J=7.8Hz,1H),5.63(br s,1H),5.36(d,J=10.0Hz,1H),5.28-5.14(m,2H),4.48(t,J=11.7Hz,1H),4.14-4.03(m,1H),3.00(s,3H),2.05(br d,J=12.3Hz,1H),1.86-1.74(m,1H)。
14fb:MS(ESI,m/z):548.2[M+1];ee值:99.68%
1H NMR(400MHz,CDCl 3)δ=7.65(br d,J=7.3Hz,2H),7.48(br s,1H),7.39-7.28(m,3H),7.25-7.17(m,1H),7.08(br s,1H),6.99-6.79(m,3H),6.67(br s,1H),5.82(d,J=7.8Hz,1H),5.66(br s,1H),5.40(d,J=10.0Hz,1H),5.27(br d,J=9.0Hz,1H),5.18(br dd,J=7.2,11.2Hz,1H),4.52(t,J=11.8Hz,1H),4.14(br d,J=11.3Hz,1H),3.03(s,3H),2.11(br d,J=13.3Hz,1H),1.89(br dd,J=6.4,14.9Hz,1H)。
步骤7:化合物14A的合成
将14fa(162mg,295.88μmol,1eq)溶于二氯甲烷(10mL),往其中加入无水氯化镁(563.41mg,5.92mmol,20eq),反应液在25℃下搅拌14小时。反应液直接浓缩得到粗品。粗品经制备反向液相色谱(分离柱:Phenomenex Gemini-NX C18 75*30mm*3μm;流动相:[水(0.225%FA)-ACN];ACN%:25%-55%,7min)纯化,得到化合物14A。MS(ESI,m/z):458.2[M+1];ee值:100%.
1H NMR(400MHz,CD 3OD)δ=7.51(br s,1H),7.26(br d,J=6.5Hz,1H),7.18-6.97(m,4H),6.92(br t,J=9.3Hz,1H),5.90(br s,1H),5.77(br d,J=7.5Hz,1H),5.58(br t,J=8.8Hz,1H),4.60(br s,1H),4.22(br d,J=10.5Hz,1H),3.13(s,3H),2.23(br s,2H);
19F NMR(377MHz,CD 3OD)δ=-121.39(br s,1F),-136.96(br s,1F),-143.18(br s,1F)。
步骤8:化合物14B的合成
将14fb(164mg,299.53μmol,1eq)溶于二氯甲烷(10mL),往其中加入无水氯化镁(570.37mg,5.99mmol,20eq),反应液在25℃下搅拌14小时。反应液直接浓缩得到粗品。粗品经制备反向液相色谱(分离柱:Phenomenex Gemini-NX C18 75*30mm*3μm;流动相:[水(0.225%FA)-ACN];ACN%:25%-55%,7min)纯化,得到化合物14B。MS(ESI,m/z):458.1[M+1];ee值:100%
1H NMR(400MHz,CD 3OD)δ=7.64-7.42(m,1H),7.30-7.22(m,1H),7.18-6.97(m,4H),6.92(br t,J=9.3Hz,1H),5.90(br s,1H),5.77(d,J=7.5Hz,1H),5.57(br t,J=9.0Hz,1H),4.66-4.53(m,1H),4.22(br d,J=11.5Hz,1H),3.13(s,3H),2.23(br s,2H);
19F NMR(377MHz,CD 3OD)δ=-121.39(br s,1F),-136.95(br s,1F),-143.18(br s,1F)。
实施例15
Figure PCTCN2021094384-appb-000090
合成路线:
Figure PCTCN2021094384-appb-000091
步骤1:化合物15A的合成
将化合物14B(84mg,183.65μmol,1eq)溶于N,N-二甲基乙酰胺(2mL),往其中加入碳酸钾(50.76mg,367.29μmol,2eq)、碘化钾(30.49mg,183.65μmol,1eq)和氯甲基甲基碳酸酯(45.74mg,367.29μmol,2eq),反应液在70℃下搅拌3小时。反应液冷却到室温,加入水(30mL),用乙酸乙酯萃取(30mL×2)。有机相经水(50mL)和饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥后浓缩干得粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=1∶0-20∶1)纯化得到化合物15A。MS(ESI,m/z):546.1[M+1];
1H NMR(400MHz,CDCl 3)δ=7.44(br s,1H),7.25-7.16(m,1H),7.13-7.03(m,1H),7.00-6.68(m,4H),5.95(br d,J=6.3Hz,1H),5.85(br d,J=7.5Hz,1H),5.78-5.58(m,2H),5.46(br t,J=8.5Hz,1H),4.61(br t,J=11.0Hz,1H),4.19(br d,J=11.0Hz,1H),3.87(s,3H),3.09(s,3H),2.13(br s,2H)。
实施例16
Figure PCTCN2021094384-appb-000092
合成路线:
Figure PCTCN2021094384-appb-000093
步骤1:化合物16a的合成
将镁屑(5.54g,227.73mmol,1eq)加入500毫升三口瓶中,体系用氮气置换三次,在氮气保护下加入碘(578.01mg,2.28mmol,0.01eq),加热至碘均匀铺满镁屑,停止加热,加入四氢呋喃(231mL)和3,4-二氟-1-溴苯(5.49g,28.47mmol,0.125eq),加热至75℃引发反应,反应温度降至70℃,往其中缓慢滴加3,4-二氟-1-溴苯(38.46g,199.26mmol,0.875eq),滴加完毕,反应液在70℃下继续搅拌2小时,冷却至室温。将上述反应液取上层澄清液(0.89M,189.96mL,2.97eq),在0℃下缓慢滴加入4,5-二氟水杨醛(9g,56.93mmol,1eq)溶于四氢呋喃(150mL)的溶液中(历时2小时),滴加完毕,反应液在25℃下搅拌2小时。然后向反应液中加入饱和氯化铵水溶液(500mL)淬灭反应,然后加入乙酸乙酯(3×500mL)萃取得有机相,有机相经无水硫酸钠干燥后减压浓缩得粗产品。粗品经硅胶柱层析(石油醚/乙酸乙酯=1∶0-5∶1)分离提纯,得到化合物16a。
1H NMR(400MHz,CDCl 3)δ=7.64(s,1H),7.26-7.13(m,2H),7.09(ddd,J=2.1,4.1,6.3Hz,1H),6.76-6.65(m,2H),5.91(d,J=1.8Hz,1H),3.09(d,J=3.3Hz,1H)。
步骤2:化合物1e的合成
将16b(3.01g,6.70mmol,1eq)、16a(3.65g,13.39mmol,2eq)、S-联萘酚磷酸酯(583.07mg,1.67mmol,0.25eq)和R-联萘酚磷酸酯(583.07mg,1.67mmol,0.25eq)溶于1,2-二氯乙烷(30mL)中,反应液在90℃下搅拌40小时。反应液直接浓缩。粗品经硅胶柱层析(二氯甲烷/甲醇=1∶0-20∶1)分离提纯,得到化合物16b。MS(ESI,m/z):704.3[M+1]。
步骤3:化合物16c的合成
将16b(4.33g,6.15mmol,1eq)溶于盐酸甲醇溶液(1M,43.30mL,7.04eq)和1,2-二氯乙烷(43.3mL),于70℃搅拌3.5小时。反应冷却至20℃,加入饱和碳酸氢钠水溶液至pH=8,混合物用二氯甲烷/甲醇(10∶1,100mL×4)萃取。有机相合并后经无水硫酸钠干燥后浓缩得到粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=1∶0-10∶1)分离提纯,得到化合物16c。
1H NMR(400MHz,CD 3OD)δ=7.68-7.59(m,1H),7.42-7.33(m,5H),7.32-7.24(m,3H),7.10(dd,J=9.2,11.2Hz,1H),6.51(dd,J=6.9,11.8Hz,1H),6.08(d,J=7.6Hz,1H),5.89(s,1H),5.32(d,J=10.8Hz,1H),5.14(d,J=10.8Hz,1H),4.57(dd,J=6.2,7.8Hz,1H),3.66-3.53(m,1H),3.44(td,J=5.4,11.0Hz,1H),2.99(s,3H),1.37(dt,J=5.7,13.4Hz,1H),1.31-1.18(m,1H)。
步骤4:化合物16d的合成
将16c(974mg,1.67mmol,1eq)溶于二氯甲烷(18mL),往其中加入三苯基膦(656.70mg,2.50mmol,1.5eq),反应液在25℃下搅拌15分钟,加入四溴化碳(830.31mg,2.50mmol,1.5eq),反应液在25℃氮气保护下1小时。反应液中加入甲醇(3mL)淬灭后直接浓缩得到粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=1∶0-20∶1)纯化得到化合物16d。
1H NMR(400MHz,CDCl 3)δ=9.81(br s,1H),7.41(br t,J=8.3Hz,1H),7.36-7.30(m,2H),7.24(br d,J=2.0Hz,5H),7.01(br d,J=7.0Hz,1H),6.91-6.77(m,2H),6.16(br d,J=7.0Hz,1H),5.79(br s,1H),5.29(s,1H),5.08(d,J=11.0Hz,1H),4.53(dd,J=5.4,8.2Hz,1H),3.37-3.19(m,2H),3.02(s,3H),1.72-1.49(m,2H)。
步骤5:化合物16e的合成
将碳酸铯(484.45mg,1.49mmol,2.14eq)溶于乙腈(45mL),体系加热至80℃,每隔5分钟加入1/25的16d(450mg,696.14μmol,1eq)溶于乙腈(45mL)的溶液(历时2小时)。添加完毕,反应液在80℃下搅拌80分钟。反应液冷却至室温,加入水(50mL),用二氯甲烷(3×100mL)萃取。有机相合并,经无水硫酸钠干燥后浓缩得到粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=1∶0-20∶1)纯化得到化合物16e。
1H NMR(400MHz,CDCl 3)δ=7.61(d,J=6.8Hz,2H),7.43-7.31(m,3H),7.11(br s,1H),7.00-6.85(m,2H),6.79(dd,J=8.5,10.0Hz,1H),6.72(d,J=7.8Hz,2H),6.06(br s,1H),5.51-5.37(m,2H),5.28-5.18(m,1H),4.85(s,1H),4.61-4.52(m,1H),4.17(br d,J=11.3Hz,1H),2.99(s,3H),2.04-1.89(m,2H)。
步骤6:化合物16fa和16fb的合成
化合物16e经SFC(分离柱:DAICEL CHIRALPAK AS(250mm*30mm,10μm);流动相:A[CO 2];B(0.1%NH 3H 2O EtOH)%:40%-40%,min)分离得到化合物16fa(保留时间:3.464min)和16fb(保留时间:4.041min)。
16fa:MS(ESI,m/z):566.2[M+1];ee值:100%
1H NMR(400MHz,CDCl 3)δ=7.61(d,J=6.8Hz,2H),7.40-7.29(m,3H),7.24-6.85(m,3H),6.79(dd,J=8.5,10.0Hz,1H),6.71(br d,J=7.5Hz,1H),6.59(br s,1H),5.99(br s,1H),5.51-5.38(m,2H),5.21(br s,1H),4.85(s,1H),4.62-4.52(m,1H),4.19-4.14(m,1H),2.97(s,3H),2.03-1.87(m,2H)。
16fb:MS(ESI,m/z):566.2[M+1];ee值:100%。
1H NMR(400MHz,CDCl 3)δ=7.62(d,J=6.8Hz,2H),7.45-7.29(m,3H),7.12(br s,1H),6.99-6.85(m,2H),6.79(dd,J=8.5,10.3Hz,1H),6.70(br d,J=6.8Hz,1H),6.59(br s,1H),5.93(br s,1H),5.49-5.33(m,2H),5.21(br s,1H),4.84(s,1H),4.55(br t,J=11.7Hz,1H),4.17-4.11(m,1H),2.94(s,3H),2.03-1.80(m,2H)。
步骤7:化合物16A的合成
将16fa(100mg,176.83μmol,1eq)溶于二氯甲烷(5mL),往其中加入无水氯化镁(336.72mg,3.54mmol,20eq),反应液在25℃下搅拌14小时。反应液直接浓缩得到粗品。粗品经制备反向液相色谱(分离柱:Phenomenex Gemini-NX C18 75*30mm*3μm;流动相:[水(0.225%FA)-ACN];ACN%:30%-60%,7min)纯化,得到化合物16A。MS(ESI,m/z):476.2[M+1];ee值:100%。
1H NMR(400MHz,CD 3OD)δ=7.43-6.89(m,6H),5.84(d,J=7.5Hz,1H),5.54(dd,J=7.5,11.0Hz,1H),5.40(s,1H),4.64(br t,J=10.9Hz,1H),4.24(br d,J=11.3Hz,1H),3.08(s,3H),2.25-2.06(m,2H);
19F NMR(377MHz,CD 3OD)δ=-136.77(br d,J=20.8Hz,1F),-139.45(br s,1F),-143.10(br d,J=20.8Hz,1F)。
步骤8:化合物16B的合成
将16fb(100mg,176.83μmol,1eq)溶于二氯甲烷(5mL),往其中加入无水氯化镁(336.72mg,3.54mmol,20eq),反应液在25℃下搅拌14小时。反应液直接浓缩得到粗品。粗品经制备反向液相色谱(分离柱:Phenomenex Gemini-NX C18 75*30mm*3μm;流动相:[水(0.225%FA)-ACN];ACN%:30%-60%,7min)纯化,得到化合物16B。MS(ESI,m/z):476.1[M+1];ee值:100%
1H NMR(400MHz,CD 3OD)δ=7.43-6.91(m,6H),5.84(d,J=7.5Hz,1H),5.54(dd,J=7.7,10.9Hz,1H),5.40(s,1H),4.68-4.59(m,1H),4.24(br d,J=11.5Hz,1H),3.08(s,3H),2.25-2.06(m,2H);
19F NMR(377MHz,MeOD-d4)δ=-136.77(br d,J=20.8Hz,1F),-139.45(br s,1F),-143.11(br d,J=20.8Hz,1F)。
实施例17
Figure PCTCN2021094384-appb-000094
合成路线:
Figure PCTCN2021094384-appb-000095
步骤1:化合物17b的合成
25℃下,往圆底烧瓶中加入N,N-二甲基乙酰胺(5mL),再缓慢加入18e(30mg,49.31μmol,1eq)和氰化锌(20mg,170.31μmol,10.81μL,3.45eq)以及四(三苯基膦)钯(11.40mg,9.86μmol,0.2eq),在氮气保护下,反应液于115℃持续搅拌12小时。把反应液缓慢倒入水(10mL)中,用乙酸乙酯萃取两次(50mL×2),合并有机相并依次用水(10mL)和饱和食盐水(100mL)洗涤,得有机相并减压浓缩得粗品。粗品经硅胶柱层析分离(二氯甲烷/甲醇=100∶1-100∶10)。得到粗品再经制备薄层色谱(二氯甲烷/甲醇=10∶1)分离得到化合物17b。
步骤2:化合物17A的合成
25℃下,往圆底烧瓶中加入二氯甲烷(2mL),再缓慢加入17b(15mg,27.05μmol,1eq)和无水氯化镁(25.75mg,270.49μmol,10eq),在氮气保护下,反应液于25℃持续搅拌1小时。减压浓缩得粗品。粗品经制备反向液相色谱(分离柱:Phenomenex Gemini-NX C18 75*30mm*3μm;流动相:[水(0.225%FA)-ACN];ACN%:20%-50%,7min)分离纯化得到17A。MS(ESI,m/z):465.1[M+1];
1H NMR(400MHz,CD 3OD)δ=7.94(br d,J=8.3Hz,1H),7.66(br t,J=7.9Hz,1H),7.55(br d,J=7.9Hz,1H),7.50-7.38(m,1H),7.18(br dd,J=7.6,10.6Hz,1H),7.12-6.96(m,2H),5.85(s,1H),5.75(br d,J=7.4Hz,1H),5.59(br t,J=8.8Hz,1H),4.71-4.60(m,1H),4.27(br d,J=11.6Hz,1H),3.12(s,3H),2.24(br d,J=8.1Hz,2H);
19F NMR(377MHz,CD 3OD)δ=-135.94(br d,J=22.6Hz,1F),-142.49(br d,J=19.8Hz,1F)。
实施例18
Figure PCTCN2021094384-appb-000096
合成路线:
Figure PCTCN2021094384-appb-000097
步骤1:化合物18a的合成
0℃下,往圆底烧瓶中加入四氢呋喃(60mL),再缓慢加入1-溴-2-碘苯(9.0g,31.81mmol,4.09mL,1eq)和异丙基氯化镁氯化锂(1.3M,26.92mL,1.1eq),在氮气保护下,反应液于0℃持续搅拌0.5小时。然后加入4,5-二氟水杨醛(1.26g,7.95mmol,0.25eq)的四氢呋喃(10mL)溶液,并在0℃下继续搅拌0.5小时。反应液缓慢倒入水(100mL)中,用乙酸乙酯(100mL×2)萃取,合并有机相并依次用水(100mL)和饱和食盐水(100mL)洗涤,有机相减压浓缩得粗品。粗品经硅胶柱层析(石油醚/乙酸乙酯=100∶1-5∶1)分离提纯,得到化合物18a。
步骤2:化合物18b的合成
将1j(1.0g,2.22mmol,1eq)、18a(701.03mg,2.22mmol,1eq)、S-联萘酚磷酸酯(77.50mg,0.22mmol,0.1eq)和R-联萘酚磷酸酯(77.50mg,0.22mmol,0.1eq)溶于1,2-二氯乙烷(50mL)中,反应液在氮气保护下于75℃搅拌12小时。将反应液倒入饱和碳酸氢钠溶液(100mL)中,用乙酸乙酯萃取(100mL×2)。合并有机相,再用水(30mL×2)和饱和食盐水(250mL×2)洗涤,浓缩后得粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶1-10∶1)分离提纯,得到化合物18b。MS(ESI,m/z):746.3[M+1]。
步骤3:化合物18c的合成
将18b(900mg,1.21mmol,1eq)溶于盐酸甲醇溶液(1M,11mL),于70℃搅拌2小时。反应冷却至20℃,倒入饱和碳酸氢钠水溶液(50mL)中,混合物用二氯甲烷(50mL×2)萃取。有机相合并后用水(50mL)和饱和食盐水(50mL)各洗一次,浓缩得到粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-94∶6)分 离提纯,得到化合物18c。MS(ESI,m/z):626.1[M+1]。
步骤4:化合物18d的合成
将18c(300mg,0.48mmol,1eq)悬浮于二氯甲烷(3mL)中,往其中加入三苯基膦(188mg,0.72mmol,1.5eq),反应液在25℃下搅拌15分钟,加入四溴化碳(238mg,0.72mmol,1.5eq),继续搅拌13小时。补加三苯基膦(100mg,0.38mmol,0.8eq)和四溴化碳(127mg,0.38mmol,0.8eq),搅拌2个小时。反应液中加入甲醇(1mL)淬灭后直接浓缩得到粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=99∶1-98∶2)纯化得到化合物18d。
1H NMR(400MHz,CDCl 3)δ=9.55(br s,1H),7.95(br s,1H),7.63(br d,J=7.8Hz,1H),7.55(br t,J=7.5Hz,1H),7.38(br s,2H),7.28(br s,4H),7.26-7.07(m,1H),6.95-6.76(m,2H),6.34(br s,2H),5.35(br d,J=10.8Hz,1H),5.15(br d,J=11.3Hz,1H),4.47(br t,J=6.0Hz,1H),3.33(br s,1H),3.24(br s,1H),3.06(s,3H),1.63(br s,2H)。
步骤5:化合物18e的合成
25℃下,往乙腈(900mL)中加入18d(180mg,0.26mmol,1eq)和碳酸铯(1.70g,5.22mmol,20eq),体系加热至80℃,搅拌2个小时。反应液冷却至室温,过滤后滤液浓缩得到粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=99∶1-97∶3)纯化得到化合物18e。MS(ESI,m/z):608.1[M+1]。
步骤6:化合物18A的合成
将18e(15mg,25μmol,1eq)溶于二氯甲烷(2mL),往其中加入无水氯化镁(47mg,0.49mmol,20eq),反应液在25℃下搅拌3小时。反应液直接浓缩得到粗品。粗品经制备反向液相色谱(分离柱:Phenomenex Gemini-NX C18 75*30mm*3μm;流动相:[水(0.225%FA)-ACN];ACN%:25%-55%,7min)纯化,得到化合物18A。MS(ESI,m/z):517.8[M+1];
1H NMR(400MHz,CD 3OD)δ=7.80(dd,J=1.5,8.0Hz,1H),7.38(dd,J=1.0,8.0Hz,1H),7.31(t,J=7.7Hz,1H),7.15-7.05(m,2H),7.04-6.94(m,2H),6.11(s,1H),5.76(d,J=7.8Hz,1H),5.54(t,J=9.2Hz,1H),4.68-4.53(m,1H),4.23(br d,J=11.3Hz,1H),3.12(s,3H),2.28-2.12(m,2H);
19F NMR(377MHz,CD 3OD)δ=-135.56(br d,J=24.3Hz,1F),-141.81(br d,J=20.8Hz,1F)。
实施例19
Figure PCTCN2021094384-appb-000098
合成路线:
Figure PCTCN2021094384-appb-000099
步骤1:化合物19a的合成
25℃下,往三口瓶中加入乙酸乙酯(25mL),再缓慢加入1j(2.5g,5.56mmol,1eq)和T3P的乙酸乙酯溶液(14.16g,22.24mmol,13.23mL,浓度:50%,4eq)以及3b(3.56g,11.12mmol,2eq),在氮气保护下,反应液于75℃下持续搅拌12小时。把反应液缓慢倒入水(50mL)中,用乙酸乙酯萃取两次(50mL×2),合并有机相并依次用水(50mL)和饱和食盐水(50mL)洗涤,得有机相并减压浓缩得粗品。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)分离,得到化合物19a。
1H NMR(400MHz,CDCl 3)δ=7.75(br d,J=7.5Hz,1H),7.59-7.52(m,2H),7.23-6.92(m,10H),6.91-6.81(m,5H),6.74(br d,J=8.0Hz,1H),5.52-5.35(m,1H),5.31(s,1H),5.15(d,J=10.4Hz,1H),4.99-4.93(m,1H),4.89-4.80(m,1H),4.71-4.59(m,1H),4.52-4.29(m,2H),3.84-3.82(m,3H),3.80(d,J=5.3Hz,3H),3.47(dt,J=3.3,7.0Hz,1H),3.40-3.20(m,2H),2.84(s,3H),1.61-1.44(m,2H)。
步骤2:化合物19b的合成
19a(3g,3.99mmol,1eq)溶于预先混合好的盐酸(12M,1.30mL,3.92eq)的甲醇(30.0mL)溶液(~0.5M),于60℃搅拌18个小时。反应冷却至20℃,加入碳酸氢钠固体调节pH至>7。用棉花过滤,加入硅胶后浓缩蒸干。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)分离,得到19b。
1H NMR(400MHz,CDCl 3)δ=7.60-7.50(m,2H),6.93(br t,J=7.2Hz,1H),6.83-6.69(m,2H),6.10-5.99(m,1H),5.96-5.85(m,1H),5.49(br d,J=10.8Hz,1H),5.38-5.35(m,1H),4.70-4.62(m,1H),4.61-4.54(m,1H),3.79-3.52(m,2H),2.98-2.92(m,3H),1.51-1.29(m,2H)。
步骤3:化合物19c的合成
20℃,在干燥的三口瓶中加入19b(171mg,334.27μmol,1eq)和二氯甲烷(2mL),开启搅拌,随后加入三苯基膦(131.51mg,501.40μmol,1.5eq)。反应在此温度下搅拌15min,然后加入四溴化碳(166.28mg,501.40μmol,1.5eq),体系变得澄清。反应于20℃继续搅拌2小时。向反应液加入水10mL淬灭反应,水相用二氯甲烷(10mL×3)萃取,合并有机相用饱和食盐水(10mL×2)洗涤,有机相用无水硫 酸钠干燥。过滤减压浓缩。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)分离,得到19c。
1H NMR(400MHz,DMSO-d6)δ=7.66-7.61(m,1H),7.59-7.48(m,2H),7.47-7.34(m,3H),7.22-7.16(m,2H),7.12-6.96(m,2H),6.84-6.73(m,1H),6.18(br d,J=2.4Hz,1H),6.00-5.88(m,1H),5.53-5.22(m,2H),4.74-4.55(m,1H),3.46-3.20(m,2H),3.02-2.86(m,3H),1.88-1.51(m,2H)。
步骤4:化合物19d的合成
20℃下,在干燥的三口瓶中加入19c(215mg,374.26μmol,1eq)和乙腈(1045mL),开启搅拌,随后加入碳酸铯(2.44g,7.49mmol,20eq),氮气置换3次,将反应置于80℃搅拌3.3小时。反应液通过滤纸过滤,滤饼用乙腈(50mL)淋洗,滤液减压浓缩。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)分离,得到化合物19d。
1H NMR(400MHz,DMSO-d 6)δ=7.54(d,J=6.9Hz,2H),7.41-7.27(m,5H),7.25-7.16(m,5H),7.14-7.04(m,2H),6.83(d,J=7.8Hz,1H),5.63(d,J=7.8Hz,1H),5.44-5.34(m,1H),5.20-5.09(m,3H),4.61-4.50(m,1H),4.17-4.13(m,1H),2.88(s,3H),2.16-2.04(m,1H),1.91-1.75(m,1H)。
步骤5:化合物19ea和19eb的合成
化合物19d经SFC(分离柱:DAICEL CHIRALPAK AS(250mm*30mm,10μm);流动相:[Neu-甲醇]甲醇%:50%-50%,20min))分离得到化合物19ea(保留时间:1.192min)和19eb(保留时间:1.411min)。
步骤6:化合物19A和19B的合成
20℃下,往圆底烧瓶中加入二氯甲烷(1mL),再缓慢加入19ea(40mg,81.05μmol,1eq)和无水氯化镁(154.33mg,1.62mmol,20eq),在氮气保护下,反应液于20℃持续搅拌18小时。减压浓缩得粗品,粗品经制备反向液相色谱(分离柱:Welch Xtimate C18 100*25mm*3μm;流动相:[H 2O(0.05%HCl)-ACN];ACN%:15%-45%,8min)分离纯化,得到化合物19A。MS(ESI,m/z):404.1[M+1];ee值:100%.
1H NMR(400MHz,CDCl 3)δ=7.35-7.29(m,2H),7.23-6.97(m,7H),6.84-6.73(m,1H),6.34-6.02(m,1H),5.70-5.56(m,1H),4.81-4.59(m,1H),4.34-4.20(m,1H),3.10(s,3H),2.29-1.93(m,3H)。
20℃下,往圆底烧瓶中加入二氯甲烷(1mL),再缓慢加入19eb(20mg,40.52μmol,1eq)和无水氯化镁(77.16mg,810.45μmol,20eq),在氮气保护下,反应液于20℃持续搅拌18小时。减压浓缩得粗品,粗品经制备反向液相色谱(分离柱:Welch Xtimate C18 100*25mm*3μm;流动相:[H 2O(0.05%HCl)-ACN];ACN%:15%-45%,8min)分离纯化,得到化合物19B。MS(ESI,m/z):404.1[M+1];ee值:100%.
1H NMR(400MHz,CDCl 3)δ=7.36-7.29(m,2H),7.24-6.93(m,9H),6.74-6.65(m,1H),6.15-5.88(m,1H),5.16-5.05(m,1H),4.89-4.73(m,1H),4.29-4.17(m,1H),3.11(s,3H),2.27-2.04(m,2H)。
实施例20
Figure PCTCN2021094384-appb-000100
合成路线:
Figure PCTCN2021094384-appb-000101
步骤1:化合物20a的合成
在干燥的三口瓶中加入3,4-二氟水杨醛(8g,50.60mmol,1eq)和乙腈(80mL),加入碳酸钾(13.99g,101.20mmol,2eq),随后加入烯丙基溴(9.18g,75.90mmol,29.97mL,1.5eq),氮气置换3次,将反应置于50℃搅拌16小时。把反应液缓慢倒入水(100mL)中,用乙酸乙酯(100mL×3)萃取,合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩的得到化合物20a。
1H NMR(400MHz,CDCl 3)δ=10.24(d,J=0.8Hz,1H),7.54(ddd,J=2.1,6.1,8.7Hz,1H),6.93-6.84(m,1H),6.05-5.86(m,1H),5.42-5.23(m,3H),4.74(dd,J=0.9,6.0Hz,2H)。
步骤2:化合物20b的合成
在预先干燥过的三口烧瓶中加入原料20a(8.74g,44.10mmol,1eq),加入溶剂四氢呋喃(100mL),氮气抽换气三次,体系温度(内)控制在0-5℃,缓慢滴加苯基格氏试剂(3M,22.05mL,1.5eq),加毕,混合物在20℃继续搅拌1小时。控制0-5℃将反应液缓慢倒入饱和氯化铵(100mL),用乙酸乙酯萃取两次(100mL×2),合并有机相并依次用饱和食盐水(200mL)洗涤,无水硫酸钠干燥,减压浓缩。粗品经硅胶柱层析(乙酸乙酯/石油醚=100∶0-75∶15)分离,得到20b。
1H NMR(400MHz,CDCl 3)δ=7.29-7.23(m,5H),7.04(ddd,J=2.2,6.1,8.6Hz,1H),6.88-6.71(m,1H),5.94(d,J=5.1Hz,1H),5.84-5.65(m,1H),5.27-5.09(m,2H),4.39(dd,J=0.9,6.0Hz,2H),2.51(d,J=5.3Hz,1H)。
步骤3:化合物20c的合成
在预先干燥过的三口烧瓶中加入20b(760mg,2.75mmol,1eq),加入溶剂二氯甲烷(8mL)氮气抽换气三次,将该反应器置于冰浴中,控制体系温度(内)在0-5℃,缓慢滴加二氯亚砜(981.81mg,8.25mmol,598.66μL,3eq),加毕,0℃搅拌45min,随后缓慢升温至20℃继续搅拌2小时。减压浓缩得到20c,直接用于下一步。
1H NMR(400MHz,CDCl 3)δ=7.43-7.27(m,6H),6.93-6.84(m,1H),6.48(s,1H),6.02-5.85(m,1H),5.42-5.19(m,2H),4.70-4.46(m,2H)。
步骤4:化合物20d的合成
在预先干燥过的三口烧瓶中加入1j(1.02g,2.26mmol,1eq)和溶剂N,N-二甲基甲酰胺(5mL),氮气抽换气三次。控制体系温度(内)在0-5℃,缓慢加入氢化钠(135.72mg,3.39mmol,60%含量,1.5eq),反应在0℃搅拌30min。随后控制体系温度(内)在0-5℃,缓慢向体系滴加20c(1g,3.39mmol,1.5eq)和N,N-二甲基甲酰胺(5mL)的混合溶液。加毕,混合物在20℃继续搅拌2小时。将反应液缓慢加入冰水(50mL)淬灭反应,水相用二氯甲烷(100mL×3)萃取,合并有机相用饱和食盐水(100mL×4)洗涤,有机相用无水硫酸钠干燥,过滤减压浓缩。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)分离,得到20d。
步骤5:化合物20e的合成
20℃,在干燥的三口瓶中加入20d(814mg,1.15mmol,1eq)和甲醇(27mL),开启搅拌,随后加入四(三苯基膦)钯(132.90mg,115.01μmol,0.1eq),氮气置换3次,反应在此温度下搅拌10min,然后加入碳酸钾(476.86mg,3.45mmol,3eq),反应于20℃继续搅拌2小时。反应液通过硅藻土过滤,滤饼用二氯甲烷(25mL×2)洗涤,有机相用水(50mL)和饱和食盐水(50mL)依次洗涤,分液有机相用无水硫酸钠干燥,减压浓缩。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-97∶3)分离,得到20e。
1H NMR(400MHz,CDCl 3)δ=7.59-7.34(m,5H),7.23-7.03(m,7H),6.98-6.84(m,3H),6.76-6.64(m,1H),5.81-5.74(m,1H),5.53-5.25(m,3H),4.69-4.55(m,1H),4.52-4.30(m,2H),3.88-3.78(m,3H),3.53-3.41(m,1H),3.40-3.28(m,1H),2.95-2.84(m,3H),1.66-1.48(m,1H),1.46-1.35(m,1H)。
步骤6:化合物20f的合成
20e(345mg,516.70μmol,1eq)溶于预先混合好的盐酸(12M,168.86μL,3.92eq)的甲醇(3.45mL)溶液(~0.5M),于60℃搅拌18个小时。反应冷却至20℃,加入碳酸氢钠固体调节pH至>7。用棉花过滤,加入硅胶后浓缩蒸干。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)分离,得到20f。
1H NMR(400MHz,CDCl 3)δ=7.62-7.37(m,11H),7.06-6.96(m,2H),6.70-6.57(m,1H),5.86-5.80(m,1H),5.48-5.26(m,3H),4.75-4.68(m,1H),3.73-3.61(m,1H),3.59-3.47(m,1H),3.00-2.97(m,3H),1.57-1.53(m,2H)。
步骤7:化合物20g的合成
20℃,在干燥的三口瓶中加入20f(107.00mg,195.42μmol,1eq)和二氯甲烷(2mL),开启搅拌,随后加入三苯基膦(76.88mg,293.12μmol,1.5eq)。反应在此温度下搅拌15min,然后加入四溴化碳(97.21mg,293.12μmol,1.5eq),体系变得澄清。反应于20℃继续搅拌2小时。向反应液加入水(10mL)淬灭反应,水相用二氯甲烷(10mL×3)萃取,合并有机相用饱和食盐水(10mL×2)洗涤,有机相用无水硫酸钠干燥。过滤减压浓缩。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)分离,得到20g。
1H NMR(400MHz,CDCl 3)δ=7.52(br d,J=7.9Hz,4H),7.47-7.36(m,3H),7.34-7.29(m,3H),7.00(br d,J=8.6Hz,1H),6.92-6.79(m,1H),6.66-6.57(m,1H),5.77(s,1H),5.45-5.37(m,2H),4.59(dd,J=5.8,7.8Hz,1H),3.43-3.33(m,1H),3.31-3.23(m,1H),2.94(s,3H),1.81-1.66(m,2H)。
步骤8:化合物20h的合成
20℃下,在干燥的三口瓶中加入20g(50mg,81.91μmol,1eq)和乙腈(250mL),开启搅拌,随后加入碳酸铯(533.74mg,1.64mmol,20eq),氮气置换3次,将反应置于80℃搅拌12小时。反应液通过滤纸过滤,滤饼用乙腈(50mL)淋洗,滤液减压浓缩。粗品经硅胶柱层析(二氯甲烷/甲醇=100∶0-95∶5)分离,得到化合物20h。
1H NMR(400MHz,CDCl 3)δ=7.62(d,J=6.6Hz,2H),7.40-7.29(m,4H),7.21-7.11(m,3H),6.95-6.79(m,2H),6.74-6.66(m,1H),6.60(d,J=7.7Hz,1H),5.76(d,J=7.7Hz,1H),5.41(d,J=2.2Hz,2H),5.00(s,1H),4.55(br t,J=11.6Hz,1H),4.40-4.25(m,1H),2.98(s,3H),2.16-1.97(m,2H)。
步骤9:化合物20A的合成
25℃下,往圆底烧瓶中加入二氯甲烷(1mL),再缓慢加入20h(17.00mg,28.89μmol,纯度90%,1eq)和无水氯化镁(55.02mg,577.87μmol,20eq),在氮气保护下,反应液于25℃持续搅拌18小时。减压浓缩反应液,甲醇溶解通过有机相针头式滤器过滤,得到粗品。粗品经制备反向液相色谱(分离条件:柱型:Phenomenex Luna C18 100*30mm*5μm;流动相:[H 2O(0.04%HCl)-ACN];ACN%:30%-60%,10min),分离纯化,得到化合物20A。MS(ESI,m/z):444.1[M+1];
1H NMR(400MHz,DMSO-d 6)δ=7.67-6.98(m,8H),6.86(d,J=7.6Hz,1H),5.55-5.48(m,2H),4.63(br t,J=11.6Hz,1H),4.33-4.20(m,1H),2.97(s,3H),2.25(br dd,J=6.9,16.1Hz,1H),2.11-1.94(m,1H)。
生物测试
试验例1:流感病毒细胞病变(CPE)实验
通过测定化合物的半数有效浓度(EC 50)值来评价化合物对流感病毒(Influenza virus,IFV)的抗病毒活性。细胞病变实验被广泛用于测定化合物对病毒感染细胞的保护作用来反映化合物的抗病毒活性。流感病毒CPE实验:
将MDCK细胞以2,000细胞每孔的密度种入黑色384孔细胞培养板中,随后置于37℃,5%CO 2培养箱中培养过夜。化合物由Echo555非接触式纳升级声波移液系统进行稀释并加入到细胞孔内(4倍倍比 稀释,8个测试浓度点)。相应流感病毒株随后以每孔1-290%组织培养感染剂量(TCID90)加入细胞培养孔中,培养基中DMSO终浓度为0.5%。设置病毒对照孔(加入DMSO和病毒,不加化合物),细胞对照孔(加入DMSO,不加化合物和病毒)和培养基对照孔(只有培养基,不含细胞)。化合物的细胞毒性测定和抗病毒活性测定平行进行,除了不加病毒,其它的实验条件和抗病毒活性实验一致。细胞板置于37℃,5%CO 2培养箱中培养5天。培养5天后使用细胞活力检测试剂盒CCK8检测细胞活性。原始数据用于化合物抗病毒活性和细胞毒性计算。
化合物的抗病毒活性和细胞毒性由化合物分别对病毒引起的细胞病毒效应的抑制率(%)表示。计算公式如下:
Figure PCTCN2021094384-appb-000102
使用GraphPad Prism软件对化合物的抑制率和细胞毒性进行非线性拟合分析,得到化合物的EC50值。本发明化合物对流感病毒的抑制活性见表1、表2和表3。
表1本发明化合物对甲流病毒A/PR/8/34(H1N1)的抑制活性
化合物编号 EC 50(nM)
1A 22
2A 13
3A 37
4A 74
7B 6
9A 34
10B 14
14B 11
16B 25
18A 11
19B 11
20A 50
表2本发明化合物对其它流感病毒的抑制活性
Figure PCTCN2021094384-appb-000103
Figure PCTCN2021094384-appb-000104
表3本发明化合物对流感病毒I38T耐药株的抑制活性
Figure PCTCN2021094384-appb-000105
结论:本发明化合物在细胞水平抑制流感病毒复制试验中展示出积极效应。
试验例2:药代动力学(PK)实验
实验目的:通过在不同动物种属中测量药代动力学性质来评价化合物的成药性。
实验材料:Sprague-Dawley品系大鼠、比格犬、食蟹猴。
实验过程:
以标准方案测试化合物静脉注射及口服给药后的动物药代特征,实验中候选化合物配成澄清溶液(静脉注射)或者均一混悬液(口服给药),给予动物单次给药。静注及口服溶媒为一定比例的二甲亚砜和聚乙二醇(15)-羟基硬脂酸酯水溶液。收集24小时内的全血样品,3200g离心10分钟,分离上清得血浆样品,以LC-MS/MS分析方法定量分析血药浓度,并计算药代参数,如达峰浓度,达峰时间,清除率,半衰期,药时曲线下面积等。
表4本发明化合物在各种属体内测定的药代动力学参数
Figure PCTCN2021094384-appb-000106
Figure PCTCN2021094384-appb-000107
*口服给药实验中检测的是7B的浓度
结论:本发明化合物的药代动力学性质符合成药的要求。
试验例3:小鼠药效实验
实验目的:通过在小鼠甲流治疗模型中观测受试动物的体重变化百分比和存活率来评价化合物对流感病毒(Influenzavirus,IFV)的体内抗病毒活性。小鼠治疗模型被广泛用于测定化合物对病毒感染动物的保护作用来反映化合物的抗病毒活性。
实验过程:
小鼠(BALB/c品系)在第0天经滴鼻方式进行病毒(甲流病毒株A/PR/8/34)接种,接种剂量为1000p.f.u./小鼠。从第2天至第8天用溶媒(5%DMSO+10%聚乙二醇-15羟基硬酯酸酯+85%水)或者30
mpk的8B连续处理7天,每日2次,给药方式为灌胃,共给药14次,首次给药时间为病毒接种后48小时。从第0天至第14天持续观察动物,记录体重,健康及存活状况。
实验结果见表5:
表5本发明化合物在甲流治疗模型中对小鼠的保护作用(体重)
Figure PCTCN2021094384-appb-000108
N/A:此处不适用
结论:本发明化合物在动物治疗模型药效实验中展示出保护效应。

Claims (16)

  1. 式(I)所示化合物或其药学上可接受的盐,其选自:
    Figure PCTCN2021094384-appb-100001
    其中,
    R 1选自H、C 1-3烷基、C 3-4环烷基和氧杂环丁烷;
    各R 2分别独立地选自卤素、氰基、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1、2或3个卤素取代;
    m选自0、1和2;
    R 3选自
    Figure PCTCN2021094384-appb-100002
    苯基、5-6元杂芳基、C 1-3烷基和C 3-6环烷基,所述苯基、5-6元杂芳基、C 1-3烷基和C 3-6环烷基任选被1个、2个或3个R b取代;
    R a选自苯基和苄基;
    R b各自独立地选自H、卤素、羟基、氰基、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1、2或3个卤素取代;
    R 4选自H、
    Figure PCTCN2021094384-appb-100003
    和-C(R c) 2-O-C(=O)-O-R d
    R c各自独立地选自氢和C 1-3烷基;
    R d选自氢和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R取代;
    R各自独立地选自卤素、C 1-3烷基氨基、羟基和C 1-3烷氧基;
    E 1选自-(CH 2) n-、-(CH 2) nO-和-CH=CH-CH 2O-;
    各n选自1、2和3;
    所述5-6元杂芳基包含1、2或3个独立选自O、S、N和NH的杂原子或杂原子团。
  2. 根据权利要求1所述的化合物或其药学上可接受的盐,其中,R 1选自H、甲基、异丙基、环丙基、环丁基和
    Figure PCTCN2021094384-appb-100004
  3. 根据权利要求1所述的化合物或其药学上可接受的盐,其中,R 2选自F、Cl、Br、甲基和甲氧基,所述甲基和甲氧基任选被1、2或3个卤素取代。
  4. 根据权利要求3所述的化合物或其药学上可接受的盐,其中,R 2选自F、Cl和甲基。
  5. 根据权利要求1所述的化合物或其药学上可接受的盐,其中,R 3选自苯基,所述苯基任选被1、2或3个R b取代。
  6. 根据权利要求5所述的化合物或其药学上可接受的盐,其中,R 3选自
    Figure PCTCN2021094384-appb-100005
    Figure PCTCN2021094384-appb-100006
  7. 根据权利要求1所述的化合物或其药学上可接受的盐,其中,R c选自H。
  8. 根据权利要求1所述的化合物或其药学上可接受的盐,其中,R d选自H、甲基、乙基和异丙基。
  9. 根据权利要求1所述的化合物或其药学上可接受的盐,其中,R 4选自H、
    Figure PCTCN2021094384-appb-100007
    -CH 2-O-C(=O)-OH、-CH 2-O-C(=O)-OCH 3、-CH 2-O-C(=O)-OCH 2CH 3和-CH 2-O-C(=O)-OCH(CH 3) 2
  10. 根据权利要求1所述的化合物或其药学上可接受的盐,其中,E 1选自-CH 2-、-(CH 2) 3-、-CH 2O-、-(CH 2) 2O-、-(CH 2) 3O-和-CH=CH-CH 2O-。
  11. 根据权利要求1~9任意一项所述的化合物或其药学上可接受的盐,其中,化合物选自式(V-1)、(V-2)、(V-3)和(VI-1),
    Figure PCTCN2021094384-appb-100008
    Figure PCTCN2021094384-appb-100009
    其中,R 1、R 2、R 4、R b、m和n如权利要求1~9所定义。
  12. 下式化合物或其药学上可接受的盐:
    Figure PCTCN2021094384-appb-100010
    Figure PCTCN2021094384-appb-100011
  13. 根据权利要求12所述的化合物或其药学上可接受的盐,其选自:
    Figure PCTCN2021094384-appb-100012
    Figure PCTCN2021094384-appb-100013
  14. 根据权利要求12所述的化合物或其药学上可接受的盐,其选自:
    Figure PCTCN2021094384-appb-100014
    Figure PCTCN2021094384-appb-100015
    Figure PCTCN2021094384-appb-100016
  15. 根据权利要求1~14任意一项所述的化合物或其药学上可接受的盐在制备治疗流感病毒RNA内切 酶抑制剂相关疾病的药物上的应用。
  16. 根据权利要求15所述的应用,其特征在于,所述RNA内切酶抑制剂相关药物是用于抗流感病毒的药物。
PCT/CN2021/094384 2020-05-21 2021-05-18 稠环衍生物及其在药学上的应用 WO2021233302A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21809650.1A EP4155312A1 (en) 2020-05-21 2021-05-18 Fused ring derivatives and use thereof in pharmacy
US17/926,285 US20230212187A1 (en) 2020-05-21 2021-05-18 Fused ring derivatives and use thereof in pharmacy
CN202180036796.4A CN115667270A (zh) 2020-05-21 2021-05-18 稠环衍生物及其在药学上的应用
JP2022571342A JP7407976B2 (ja) 2020-05-21 2021-05-18 縮合環誘導体及びその薬学的用途

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202010435705.1 2020-05-21
CN202010435705 2020-05-21
CN202010699302 2020-07-20
CN202010699302.8 2020-07-20
CN202010941000 2020-09-09
CN202010941000.7 2020-09-09
CN202011257770.6 2020-11-11
CN202011257770 2020-11-11
CN202110059299.8 2021-01-14
CN202110059299 2021-01-14

Publications (1)

Publication Number Publication Date
WO2021233302A1 true WO2021233302A1 (zh) 2021-11-25

Family

ID=78708089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094384 WO2021233302A1 (zh) 2020-05-21 2021-05-18 稠环衍生物及其在药学上的应用

Country Status (5)

Country Link
US (1) US20230212187A1 (zh)
EP (1) EP4155312A1 (zh)
JP (1) JP7407976B2 (zh)
CN (1) CN115667270A (zh)
WO (1) WO2021233302A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175224A1 (ja) 2015-04-28 2016-11-03 塩野義製薬株式会社 置換された多環性ピリドン誘導体およびそのプロドラッグ
WO2019230858A1 (ja) * 2018-05-31 2019-12-05 塩野義製薬株式会社 多環性カルバモイルピリドン誘導体
WO2019230857A1 (ja) * 2018-05-31 2019-12-05 塩野義製薬株式会社 多環性ピリドン誘導体
WO2020075080A1 (en) * 2018-10-10 2020-04-16 Janssen Biopharma, Inc. Macrocyclic flu endonuclease inhibitors

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR201810736T4 (tr) 2010-09-24 2018-08-27 Shionogi & Co Substitüe polisiklik karbamoil piridon derivatı ön-ilacı.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175224A1 (ja) 2015-04-28 2016-11-03 塩野義製薬株式会社 置換された多環性ピリドン誘導体およびそのプロドラッグ
WO2019230858A1 (ja) * 2018-05-31 2019-12-05 塩野義製薬株式会社 多環性カルバモイルピリドン誘導体
WO2019230857A1 (ja) * 2018-05-31 2019-12-05 塩野義製薬株式会社 多環性ピリドン誘導体
WO2020075080A1 (en) * 2018-10-10 2020-04-16 Janssen Biopharma, Inc. Macrocyclic flu endonuclease inhibitors

Also Published As

Publication number Publication date
CN115667270A (zh) 2023-01-31
JP7407976B2 (ja) 2024-01-04
JP2023529295A (ja) 2023-07-10
EP4155312A1 (en) 2023-03-29
US20230212187A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
CN111018861B (zh) 吡咯并嘧啶化合物
TW201726606A (zh) 作為免疫調節劑之化合物
KR20210093990A (ko) 헤모글로빈을 조정할 수 있는 2-포르밀-3-히드록시페닐옥시메틸 화합물
JP2024023383A (ja) 社会的機能障害の治療方法
WO2008069242A1 (ja) 新規2環性複素環化合物
US20230312571A1 (en) Ring-modified proline short peptide compound and use thereof
JP7190612B2 (ja) 置換ピペリジン化合物及びその用途
US11905276B2 (en) Bicyclic compound that acts as CRBN protein regulator
KR20200145852A (ko) 항바이러스성 화합물의 고체 형태
JP2024505735A (ja) 置換されたピリダジンフェノール系誘導体
WO2014146494A1 (zh) β-氨基羰基类化合物、其制备方法、药物组合物及其用途
CN116670135A (zh) 吡啶酮多并环类衍生物及其应用
WO2021115335A1 (zh) 作为周期蛋白依赖性激酶9抑制剂的化合物及其应用
WO2022063308A1 (zh) 一类1,7-萘啶类化合物及其应用
CN114096245B (zh) 作为ccr2/ccr5拮抗剂的杂环烷基类化合物
WO2021233302A1 (zh) 稠环衍生物及其在药学上的应用
CN115667258A (zh) 氟代吡咯并吡啶类化合物及其应用
WO2021129817A1 (zh) 具有果糖激酶(khk)抑制作用的嘧啶类化合物
WO2022063317A1 (zh) 稠合的三并环衍生物及其在药学上的应用
EP3525795B1 (en) Phenothiazine derivatives and methods of use thereof
ES2866324T3 (es) Derivados de 1-(1-hidroxi-2,3-dihidro-1H-inden5-il)-urea y compuestos similares como activadores del canal KCNQ2-5 para el tratamiento de la disuria
CN105636923A (zh) 用于制备大环内酯酰胺的方法和中间体
CN111971285A (zh) 咪唑并吡咯酮化合物及其应用
JP2014521628A (ja) 新規化合物
CA3029768A1 (en) Deuterated oliceridine compounds and pharmaceutical compositions thereof useful for treating pain

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21809650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571342

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021809650

Country of ref document: EP

Effective date: 20221221